Solar-to-chemical (STC) energy conversion is the fundamental process that nurtures Earth's ecosystem, fixing the inexhaustible solar resource into chemical bonds. Photochemical synthesis endows plants with the primary substances for their development; likewise, an artificial mimic of natural systems has long sought to support human civilization in a sustainable way. Intensive efforts have demonstrated light-triggered production of different solar fuels, such as H-2, CO, CH(4)and NH3, while research on oxidative half-reactions has built up from O(2)generation to organic synthesis, waste degradation and photo-reforming. Nevertheless, while extensive utilization of the radiant chemical potential to promote a manifold of endergonic processes is the common thread of such research, exploration of the chemical space is fragmented by the lack of a common language across different scientific disciplines. Focusing on colloidal semiconductor materials, this Viewpoint discusses an inclusive protocol for the discovery and assessment of STC redox reactions, aiming to establish photon-to-molecule conversion as the ultimate paradigm beyond fossil energy exploitation.
Towards Solar Factories: Prospects of Solar‐to‐Chemical Energy Conversion using Colloidal Semiconductor Photosynthetic Systems
Mirco NataliSecondo
;
2020
Abstract
Solar-to-chemical (STC) energy conversion is the fundamental process that nurtures Earth's ecosystem, fixing the inexhaustible solar resource into chemical bonds. Photochemical synthesis endows plants with the primary substances for their development; likewise, an artificial mimic of natural systems has long sought to support human civilization in a sustainable way. Intensive efforts have demonstrated light-triggered production of different solar fuels, such as H-2, CO, CH(4)and NH3, while research on oxidative half-reactions has built up from O(2)generation to organic synthesis, waste degradation and photo-reforming. Nevertheless, while extensive utilization of the radiant chemical potential to promote a manifold of endergonic processes is the common thread of such research, exploration of the chemical space is fragmented by the lack of a common language across different scientific disciplines. Focusing on colloidal semiconductor materials, this Viewpoint discusses an inclusive protocol for the discovery and assessment of STC redox reactions, aiming to establish photon-to-molecule conversion as the ultimate paradigm beyond fossil energy exploitation.File | Dimensione | Formato | |
---|---|---|---|
2020 - ChemSusChem - SCE index.pdf
solo gestori archivio
Descrizione: Full text ahead of print
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
728.31 kB
Formato
Adobe PDF
|
728.31 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ChemSusChem - 2020 - Agosti - Towards Solar Factories Prospects of Solar‐to‐Chemical Energy Conversion using Colloidal.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.