We prove a quantitative version of the Faber-Krahn inequality for the first eigenvalue of the fractional Dirichlet-Laplacian of order s. This is done by using the so-called Caffarelli-Silvestre extension and adapting to the nonlocal setting a trick by Hansen and Nadirashvili. The relevant stability estimate comes with an explicit constant, which is stable as the fractional order of differentiability goes to 1.

A quantitative stability estimate for the fractional Faber-Krahn inequality

Brasco L.
Primo
;
2020

Abstract

We prove a quantitative version of the Faber-Krahn inequality for the first eigenvalue of the fractional Dirichlet-Laplacian of order s. This is done by using the so-called Caffarelli-Silvestre extension and adapting to the nonlocal setting a trick by Hansen and Nadirashvili. The relevant stability estimate comes with an explicit constant, which is stable as the fractional order of differentiability goes to 1.
2020
Brasco, L.; Cinti, E.; Vita, S.
File in questo prodotto:
File Dimensione Formato  
bracinvit_final_rev.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 488.25 kB
Formato Adobe PDF
488.25 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022123620301038-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 627.85 kB
Formato Adobe PDF
627.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2432388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact