We prove a quantitative version of the Faber-Krahn inequality for the first eigenvalue of the fractional Dirichlet-Laplacian of order s. This is done by using the so-called Caffarelli-Silvestre extension and adapting to the nonlocal setting a trick by Hansen and Nadirashvili. The relevant stability estimate comes with an explicit constant, which is stable as the fractional order of differentiability goes to 1.
A quantitative stability estimate for the fractional Faber-Krahn inequality
Brasco L.Primo
;
2020
Abstract
We prove a quantitative version of the Faber-Krahn inequality for the first eigenvalue of the fractional Dirichlet-Laplacian of order s. This is done by using the so-called Caffarelli-Silvestre extension and adapting to the nonlocal setting a trick by Hansen and Nadirashvili. The relevant stability estimate comes with an explicit constant, which is stable as the fractional order of differentiability goes to 1.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
bracinvit_final_rev.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
488.25 kB
Formato
Adobe PDF
|
488.25 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0022123620301038-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
627.85 kB
Formato
Adobe PDF
|
627.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.