Hospitals require the highest energy demands in non-residential buildings. They provide healthcare 24/7/365 and, at the same time, they ensure indoor air quality, thermal comfort and sterility. However, several studies reveal that high indoor temperatures and low relative humidity (RH) are often perceived in patient rooms during the heating season, suggesting an important energy saving potential. Against this background, radiant ceiling panel (RCP) systems result to be one of the most appropriate solutions as they allow to achieve significant energy savings while providing the highest level of thermal and acoustic comfort, as well as of infection control. In the present study the microclimatic survey of a patient room at Maggiore Hospital in Bologna, Italy, equipped with an air conditioning system integrated with RCP, has reported occupant thermal discomfort. Experimental data were used to calibrate a building model and dynamic building energy simulations were carried out to analyse indoor air temperature, relative humidity, predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) indexes under different inlet air temperatures, to identify the best design conditions for energy efficiency and thermal comfort improvement. It was found that the highest advantages can be obtained when neutral air is supplied.
Experimental data and simulations of performance and thermal comfort in a patient room equipped with radiant ceiling panels
Valdiserri P.
Primo
;Cesari S.Secondo
Membro del Collaboration Group
;Coccagna M.Membro del Collaboration Group
;Mazzacane S.Ultimo
Conceptualization
2020
Abstract
Hospitals require the highest energy demands in non-residential buildings. They provide healthcare 24/7/365 and, at the same time, they ensure indoor air quality, thermal comfort and sterility. However, several studies reveal that high indoor temperatures and low relative humidity (RH) are often perceived in patient rooms during the heating season, suggesting an important energy saving potential. Against this background, radiant ceiling panel (RCP) systems result to be one of the most appropriate solutions as they allow to achieve significant energy savings while providing the highest level of thermal and acoustic comfort, as well as of infection control. In the present study the microclimatic survey of a patient room at Maggiore Hospital in Bologna, Italy, equipped with an air conditioning system integrated with RCP, has reported occupant thermal discomfort. Experimental data were used to calibrate a building model and dynamic building energy simulations were carried out to analyse indoor air temperature, relative humidity, predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) indexes under different inlet air temperatures, to identify the best design conditions for energy efficiency and thermal comfort improvement. It was found that the highest advantages can be obtained when neutral air is supplied.File | Dimensione | Formato | |
---|---|---|---|
buildings-10-00235.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.