We provide three different characterizations of the space BV (O, gamma) of the functions of bounded variation with respect to a centred non-degenerate Gaussian measure gamma on open domains O in Wiener spaces. Throughout these different characterizations we deduce a sufficient condition in order to belong to BV (O, gamma) by means of the Ornstein-Uhlenbeck semigroup and we provide an explicit formula for one-dimensional sections of functions of bounded variation. Finally, we apply our techniques to Fomin differentiable probability measures nu on a Hilbert space X, and we infer a characterization of the space BV (O, nu) of the functions of bounded variation with respect to nu on open domains O subset of X.

BV functions on open domains: the Wiener case and a fomin differentiable case

Addona, D
Primo
Membro del Collaboration Group
;
Menegatti, G;Miranda, M
Ultimo
2020

Abstract

We provide three different characterizations of the space BV (O, gamma) of the functions of bounded variation with respect to a centred non-degenerate Gaussian measure gamma on open domains O in Wiener spaces. Throughout these different characterizations we deduce a sufficient condition in order to belong to BV (O, gamma) by means of the Ornstein-Uhlenbeck semigroup and we provide an explicit formula for one-dimensional sections of functions of bounded variation. Finally, we apply our techniques to Fomin differentiable probability measures nu on a Hilbert space X, and we infer a characterization of the space BV (O, nu) of the functions of bounded variation with respect to nu on open domains O subset of X.
2020
Addona, D; Menegatti, G; Miranda, M
File in questo prodotto:
File Dimensione Formato  
1534-0392_2020_5_2679.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 581.52 kB
Formato Adobe PDF
581.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2426924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact