Uterine Leiomyosarcoma (uLMS) is by far the most common type of uterine sarcoma, characterized by an aggressive clinical course, a heterogeneous genetic profile and a very scarce response to cytotoxic chemotherapy. The genetic make-up of uLMS is an area of active study that could provide essential cues for the development of new therapeutic approaches. A total of 216 patients with uLMS from cBioPortal and AACR-GENIE databases were included in the study. The vast majority of patients (81%) carried at least one mutation in either TP53, RB1, ATRX or PTEN. The most frequently mutated gene was TP53, with 61% of the patients harboring at least one mutation, followed by RB1 at 48%. PTEN alteration was more frequent in metastases than in primary lesions, consistent with a later acquisition during tumor progression. There was a significant trend for TP53 and RB1 mutations to occur together, while both TP53 and RB1 were mutually exclusive with respect to CDKN2A/B inactivation. Overall survival did not show significant correlation with the mutational status, even if RB1 mutation emerged as a favorable prognostic factor in the TP53-mutant subgroup. This comprehensive analysis shows that uLMS is driven almost exclusively by the inactivation of tumor suppressor genes and suggests that future therapeutic strategies should be directed at targeting the main genetic drivers of uLMS oncogenesis.
Genomic database analysis of uterine leiomyosarcoma mutational profile
Astolfi A.Primo
;Secchiero P.Penultimo
;
2020
Abstract
Uterine Leiomyosarcoma (uLMS) is by far the most common type of uterine sarcoma, characterized by an aggressive clinical course, a heterogeneous genetic profile and a very scarce response to cytotoxic chemotherapy. The genetic make-up of uLMS is an area of active study that could provide essential cues for the development of new therapeutic approaches. A total of 216 patients with uLMS from cBioPortal and AACR-GENIE databases were included in the study. The vast majority of patients (81%) carried at least one mutation in either TP53, RB1, ATRX or PTEN. The most frequently mutated gene was TP53, with 61% of the patients harboring at least one mutation, followed by RB1 at 48%. PTEN alteration was more frequent in metastases than in primary lesions, consistent with a later acquisition during tumor progression. There was a significant trend for TP53 and RB1 mutations to occur together, while both TP53 and RB1 were mutually exclusive with respect to CDKN2A/B inactivation. Overall survival did not show significant correlation with the mutational status, even if RB1 mutation emerged as a favorable prognostic factor in the TP53-mutant subgroup. This comprehensive analysis shows that uLMS is driven almost exclusively by the inactivation of tumor suppressor genes and suggests that future therapeutic strategies should be directed at targeting the main genetic drivers of uLMS oncogenesis.File | Dimensione | Formato | |
---|---|---|---|
Astolfi_Cancers 2020.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.