Orphan drugs, including antisense oligonucleotides (AONs), siRNAs/miRNAs, Cas9 nuclease, and recombinant genes, have recently been made available for rare diseases. However, the main bottleneck for these new therapies is delivery. Drugs/synthetic genes need to reach the affected tissues with minimal off-target effects and immune reactions. AON molecules are currently delivered as backboned naked compounds or via viral vectors. Nanocarriers are considered promising vehicles, able to improve drug distribution by organ targeting and limiting safety issues. We tested perfluoropentane-based nanobubbles (NBs) as vehicles for loading phosphorodiamidate morpholino (PMO) AON to suppress DUX4 expression in a facioscapulohumeral muscular dystrophy cell model.In vitrocell-free analysis demonstrated a good loading capacity of PMO into NBs, while experiments in cell cultures showed lack of therapeutic effect since expression of DUX4 and its targets remained unmodified. We conclude that these types of chitosan-shelled NBs do not release PMO-AON and are therefore not ideal for PMO AON-related therapies.

Chitosan-Shelled Nanobubbles Irreversibly Encapsulate Morpholino Conjugate Antisense Oligonucleotides and Are Ineffective for Phosphorodiamidate Morpholino-Mediated Gene Silencing of DUX4

Falzarano, Maria Sofia
Co-primo
;
Selvatici, Rita;Ferlini, Alessandra
Ultimo
2021

Abstract

Orphan drugs, including antisense oligonucleotides (AONs), siRNAs/miRNAs, Cas9 nuclease, and recombinant genes, have recently been made available for rare diseases. However, the main bottleneck for these new therapies is delivery. Drugs/synthetic genes need to reach the affected tissues with minimal off-target effects and immune reactions. AON molecules are currently delivered as backboned naked compounds or via viral vectors. Nanocarriers are considered promising vehicles, able to improve drug distribution by organ targeting and limiting safety issues. We tested perfluoropentane-based nanobubbles (NBs) as vehicles for loading phosphorodiamidate morpholino (PMO) AON to suppress DUX4 expression in a facioscapulohumeral muscular dystrophy cell model.In vitrocell-free analysis demonstrated a good loading capacity of PMO into NBs, while experiments in cell cultures showed lack of therapeutic effect since expression of DUX4 and its targets remained unmodified. We conclude that these types of chitosan-shelled NBs do not release PMO-AON and are therefore not ideal for PMO AON-related therapies.
2021
Falzarano, Maria Sofia; Argenziano, Monica; Marsollier, Anne Chalotte; Mariot, Virginie; Rossi, Davide; Selvatici, Rita; Dumonceaux, Julie; Cavalli, Roberta; Ferlini, Alessandra
File in questo prodotto:
File Dimensione Formato  
NAT-2020-0862-Falzarano_2P.PDF

solo gestori archivio

Descrizione: Full text ahead of print
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 391.88 kB
Formato Adobe PDF
391.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Falzarano_et_al._NAT_2020.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 226.79 kB
Formato Adobe PDF
226.79 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2423266
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact