A NiO@C composite anode is prepared through an alternative synthesis route involving precipitation of a carbon precursor on NiO nanopowder, annealing under argon to form a Ni core, and oxidation at moderate temperature to get metal oxide particles whilst retaining carbon and metallic Ni in traces. The electrode reversibly reacts in lithium cells by the typical conversion process occurring in a wide potential range with the main electrochemical activity at 1.3 V vs. Li+/Li during discharge and at 2.2 V vs. Li+/Li during charge. The NiO@C material exhibits highly improved behavior in a lithium half-cell compared to bare NiO due to faster electrode kinetics and superior stability over electrochemical displacement, leading to a reversible capacity approaching 800 mAh g−1, much enhanced cycle life and promising rate capability. The applicability of the NiO@C anode is further investigated in a lithium-ion NiO@C/LiNi⅓Co⅓Mn⅓O2 cell, which operates at about 2.5 V delivering about 160 mAh g−1 with respect to the cathode mass. The cell exhibits stable response upon 80 cycles at a C/2 rate with coulombic efficiency ranging from 97% to 99%.
Electrochemical behavior of nanostructured NiO@C anode in a lithium-ion battery using LiNi⅓Co⅓Mn⅓O2 cathode
Wei S.Co-primo
;Di Lecce D.Co-primo
;Hassoun J.
Ultimo
2020
Abstract
A NiO@C composite anode is prepared through an alternative synthesis route involving precipitation of a carbon precursor on NiO nanopowder, annealing under argon to form a Ni core, and oxidation at moderate temperature to get metal oxide particles whilst retaining carbon and metallic Ni in traces. The electrode reversibly reacts in lithium cells by the typical conversion process occurring in a wide potential range with the main electrochemical activity at 1.3 V vs. Li+/Li during discharge and at 2.2 V vs. Li+/Li during charge. The NiO@C material exhibits highly improved behavior in a lithium half-cell compared to bare NiO due to faster electrode kinetics and superior stability over electrochemical displacement, leading to a reversible capacity approaching 800 mAh g−1, much enhanced cycle life and promising rate capability. The applicability of the NiO@C anode is further investigated in a lithium-ion NiO@C/LiNi⅓Co⅓Mn⅓O2 cell, which operates at about 2.5 V delivering about 160 mAh g−1 with respect to the cathode mass. The cell exhibits stable response upon 80 cycles at a C/2 rate with coulombic efficiency ranging from 97% to 99%.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S092583882031728X-main.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.19 MB
Formato
Adobe PDF
|
3.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Manuscript text and figures.pdf
Open Access dal 29/04/2022
Descrizione: post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
633.07 kB
Formato
Adobe PDF
|
633.07 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.