The main purpose of this paper is to show that in a three-dimensional exterior Lipschitz domain (Formula presented.) the stationary Navier–Stokes equations have a solution which converges at infinity to a constant vector and assumes a boundary value (Formula presented.) (or (Formula presented.) if Omega is of class (Formula presented.)), provided (Formula presented.). Moreover, for large value of the viscosity u we prove existence, uniqueness and asymptotics of a solution (Formula presented.) for Omega and a polar symmetric.
On the stationary Navier–Stokes problem in 3D exterior domains
Coscia VincenzoPrimo
;
2020
Abstract
The main purpose of this paper is to show that in a three-dimensional exterior Lipschitz domain (Formula presented.) the stationary Navier–Stokes equations have a solution which converges at infinity to a constant vector and assumes a boundary value (Formula presented.) (or (Formula presented.) if Omega is of class (Formula presented.)), provided (Formula presented.). Moreover, for large value of the viscosity u we prove existence, uniqueness and asymptotics of a solution (Formula presented.) for Omega and a polar symmetric.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Coscia V., Russo R., Tartaglione A., On the stationary Navier Stokes problem in 3D exterior domains (2018).pdf
solo gestori archivio
Descrizione: Editoriale first on line
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.