The development of efficient numerical methods for kinetic equations with stochastic parameters is a challenge due to the high dimensionality of the problem. Recently we introduced a multiscale control variate strategy which is capable of considerably accelerating the slow convergence of standard Monte Carlo methods for uncertainty quantification. Here we generalize this class of methods to the case of multiple control variates. We show that the additional degrees of freedom can be used to further improve the variance reduction properties of multiscale control variate methods.
Multiscale variance reduction methods based on multiple control variates for kinetic equations with uncertainties
Giacomo Dimarco
Primo
;Lorenzo PareschiUltimo
2020
Abstract
The development of efficient numerical methods for kinetic equations with stochastic parameters is a challenge due to the high dimensionality of the problem. Recently we introduced a multiscale control variate strategy which is capable of considerably accelerating the slow convergence of standard Monte Carlo methods for uncertainty quantification. Here we generalize this class of methods to the case of multiple control variates. We show that the additional degrees of freedom can be used to further improve the variance reduction properties of multiscale control variate methods.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
dimarco2020.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1812.05485.pdf
accesso aperto
Descrizione: pre print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.