We prove the following statement, which has been conjecturedsince 1985:There exists a constant K such that for all natural numbers d, g with g≤Kd^(3/2) there exists an irreducible component of the Hilbert schemeof P3 whose general element is a smooth, connected curve of degree d and genus g, of maximal rank.
Maximal rank of space curves in the range A
Filippo ELLIA
;
2018
Abstract
We prove the following statement, which has been conjecturedsince 1985:There exists a constant K such that for all natural numbers d, g with g≤Kd^(3/2) there exists an irreducible component of the Hilbert schemeof P3 whose general element is a smooth, connected curve of degree d and genus g, of maximal rank.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BEF-RangeA.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
287.48 kB
Formato
Adobe PDF
|
287.48 kB | Adobe PDF | Visualizza/Apri |
Ballico2018_Article_MaximalRankOfSpaceCurvesInTheR.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
614.86 kB
Formato
Adobe PDF
|
614.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.