A low-temperature dynamical transition has been reported in several proteins. We provide the first observation of a "protein-like" dynamical transition in nonbiological aqueous environments. To this aim, we exploit the popular colloidal system of poly-N-isopropylacrylamide (PNIPAM) microgels, extending their investigation to unprecedentedly high concentrations. Owing to the heterogeneous architecture of the microgels, water crystallization is avoided in concentrated samples, allowing us to monitor atomic dynamics at low temperatures. By elastic incoherent neutron scattering and molecular dynamics simulations, we find that a dynamical transition occurs at a temperature Td ~ 250 K, independently from PNIPAM mass fraction. However, the transition is smeared out on approaching dry conditions. The quantitative agreement between experiments and simulations provides evidence that the transition occurs simultaneously for PNIPAM and water dynamics. The similarity of these results with hydrated protein powders suggests that the dynamical transition is a generic feature in complex macromolecular systems, independently from their biological function.

Evidence of a low-temperature dynamical transition in concentrated microgels

Buratti E.;Bertoldo M.
Conceptualization
;
2018

Abstract

A low-temperature dynamical transition has been reported in several proteins. We provide the first observation of a "protein-like" dynamical transition in nonbiological aqueous environments. To this aim, we exploit the popular colloidal system of poly-N-isopropylacrylamide (PNIPAM) microgels, extending their investigation to unprecedentedly high concentrations. Owing to the heterogeneous architecture of the microgels, water crystallization is avoided in concentrated samples, allowing us to monitor atomic dynamics at low temperatures. By elastic incoherent neutron scattering and molecular dynamics simulations, we find that a dynamical transition occurs at a temperature Td ~ 250 K, independently from PNIPAM mass fraction. However, the transition is smeared out on approaching dry conditions. The quantitative agreement between experiments and simulations provides evidence that the transition occurs simultaneously for PNIPAM and water dynamics. The similarity of these results with hydrated protein powders suggests that the dynamical transition is a generic feature in complex macromolecular systems, independently from their biological function.
2018
Zanatta, M.; Tavagnacco, L.; Buratti, E.; Bertoldo, M.; Natali, F.; Chiessi, E.; Orecchini, A.; Zaccarelli, E.
File in questo prodotto:
File Dimensione Formato  
sciadv.aat5895.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2414342
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact