We quantify the star formation (SF) in the inner cores (R/R200 ≤0.3) of 24 massive galaxy clusters at 0.2≲ z ≲0.9 observed by the Herschel Lensing Survey and the Cluster Lensing and Supernova survey with Hubble. These programmes, covering the rest-frame ultraviolet to far-infrared regimes, allow us to accurately characterize stellar mass-limited (M∗> 1010 M·) samples of star-forming cluster members (not)-detected in the mid- and/or far-infrared. We release the catalogues with the photometry, photometric redshifts, and physical properties of these samples. We also quantify the SF displayed by comparable field samples from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We find that in intermediate-z cluster cores, the SF activity is suppressed with respect the field in terms of both the fraction (F) of star-forming galaxies (SFGs) and the rate at which they form stars (SFR and sSFR =SFRM∗). On average, the F of SFGs is a factor ∼2 smaller in cluster cores than in the field. Furthermore, SFGs present average SFR and SFR typically ∼0.3 dex smaller in the clusters than in the field along the whole redshift range probed. Our results favour long time-scale quenching physical processes as the main driver of SF suppression in the inner cores of clusters since z ∼0.9, with shorter time-scale processes being very likely responsible for a fraction of the missing SFG population.
Quantifying the suppression of the (un)-obscured star formation in galaxy cluster cores at 0.2≲ z ≲0.9
Rosati P.;
2019
Abstract
We quantify the star formation (SF) in the inner cores (R/R200 ≤0.3) of 24 massive galaxy clusters at 0.2≲ z ≲0.9 observed by the Herschel Lensing Survey and the Cluster Lensing and Supernova survey with Hubble. These programmes, covering the rest-frame ultraviolet to far-infrared regimes, allow us to accurately characterize stellar mass-limited (M∗> 1010 M·) samples of star-forming cluster members (not)-detected in the mid- and/or far-infrared. We release the catalogues with the photometry, photometric redshifts, and physical properties of these samples. We also quantify the SF displayed by comparable field samples from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We find that in intermediate-z cluster cores, the SF activity is suppressed with respect the field in terms of both the fraction (F) of star-forming galaxies (SFGs) and the rate at which they form stars (SFR and sSFR =SFRM∗). On average, the F of SFGs is a factor ∼2 smaller in cluster cores than in the field. Furthermore, SFGs present average SFR and SFR typically ∼0.3 dex smaller in the clusters than in the field along the whole redshift range probed. Our results favour long time-scale quenching physical processes as the main driver of SF suppression in the inner cores of clusters since z ∼0.9, with shorter time-scale processes being very likely responsible for a fraction of the missing SFG population.File | Dimensione | Formato | |
---|---|---|---|
sty3335.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.87 MB
Formato
Adobe PDF
|
3.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1812.08804.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
4.17 MB
Formato
Adobe PDF
|
4.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.