Moduli spaces of complete skew-forms are compactifications of spaces of skew-symmetric linear maps of maximal rank on a fixed vector space, where the added boundary divisor is simple normal crossing. In this paper we compute their effective, nef and movable cones, the generators of their Cox rings, and for those spaces having Picard rank two we give an explicit presentation of the Cox ring. Furthermore, we give a complete description of both the Mori chamber and stable base locus decompositions of the effective cone of some spaces of complete skew-forms having Picard rank at most four.
On the birational geometry of spaces of complete forms II: Skew-forms
Massarenti A.
Primo
2020
Abstract
Moduli spaces of complete skew-forms are compactifications of spaces of skew-symmetric linear maps of maximal rank on a fixed vector space, where the added boundary divisor is simple normal crossing. In this paper we compute their effective, nef and movable cones, the generators of their Cox rings, and for those spaces having Picard rank two we give an explicit presentation of the Cox ring. Furthermore, we give a complete description of both the Mori chamber and stable base locus decompositions of the effective cone of some spaces of complete skew-forms having Picard rank at most four.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Alex_JOA.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
501.03 kB
Formato
Adobe PDF
|
501.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1803.09011.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
326.4 kB
Formato
Adobe PDF
|
326.4 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.