Moduli spaces of complete skew-forms are compactifications of spaces of skew-symmetric linear maps of maximal rank on a fixed vector space, where the added boundary divisor is simple normal crossing. In this paper we compute their effective, nef and movable cones, the generators of their Cox rings, and for those spaces having Picard rank two we give an explicit presentation of the Cox ring. Furthermore, we give a complete description of both the Mori chamber and stable base locus decompositions of the effective cone of some spaces of complete skew-forms having Picard rank at most four.

On the birational geometry of spaces of complete forms II: Skew-forms

Massarenti A.
Primo
2020

Abstract

Moduli spaces of complete skew-forms are compactifications of spaces of skew-symmetric linear maps of maximal rank on a fixed vector space, where the added boundary divisor is simple normal crossing. In this paper we compute their effective, nef and movable cones, the generators of their Cox rings, and for those spaces having Picard rank two we give an explicit presentation of the Cox ring. Furthermore, we give a complete description of both the Mori chamber and stable base locus decompositions of the effective cone of some spaces of complete skew-forms having Picard rank at most four.
2020
Massarenti, A.
File in questo prodotto:
File Dimensione Formato  
Alex_JOA.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 501.03 kB
Formato Adobe PDF
501.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1803.09011.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 326.4 kB
Formato Adobe PDF
326.4 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2412488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact