Binding of HIV-1 envelope glycoproteins to the surface of a CD4+ cell transduces intracellular signals through the primary envelope receptor, CD4, and/or the envelope coreceptor, a seven-transmembrane chemokine receptor. Macrophage-tropic strains of HIV-1 preferentially use CCR5 as an entry coreceptor, whereas T cell-tropic strains use CXC chemokine receptor-4 for entry. Intracellular signals transduced by HIV-1 envelope may have immunopathogenic consequences, including anergy, syncytium formation, apoptosis, and inappropriate cell trafficking. We demonstrate here that a recombinant envelope protein derived from an M-tropic isolate of HIV-1 can transduce CD4-dependent as well as CCR5-dependent intracellular signals in primary human CD4+ T cells. Novel HIV-induced intracellular signals that were identified include tyrosine phosphorylation of focal adhesion kinase (FAK) and CCR5, which are involved in cell adhesion and chemotaxis, respectively. HIV envelope-induced cellular association of FAK and CCR5 was also demonstrated, suggesting that ligation of CD4 and CCR5 leads to the formation of an activation complex composed of FAK and CCR5. Activation of this signaling pathway by HIV-1 envelope may be an important pathogenic mechanism of dysregulated cellular activation and trafficking during HIV infection.

Induction of phosphorylation and intracellular association of CC chemokine receptor 5 and focal adhesion kinase in primary human CD4+ T cells by macrophage-tropic HIV envelope

VACCAREZZA M;
1999

Abstract

Binding of HIV-1 envelope glycoproteins to the surface of a CD4+ cell transduces intracellular signals through the primary envelope receptor, CD4, and/or the envelope coreceptor, a seven-transmembrane chemokine receptor. Macrophage-tropic strains of HIV-1 preferentially use CCR5 as an entry coreceptor, whereas T cell-tropic strains use CXC chemokine receptor-4 for entry. Intracellular signals transduced by HIV-1 envelope may have immunopathogenic consequences, including anergy, syncytium formation, apoptosis, and inappropriate cell trafficking. We demonstrate here that a recombinant envelope protein derived from an M-tropic isolate of HIV-1 can transduce CD4-dependent as well as CCR5-dependent intracellular signals in primary human CD4+ T cells. Novel HIV-induced intracellular signals that were identified include tyrosine phosphorylation of focal adhesion kinase (FAK) and CCR5, which are involved in cell adhesion and chemotaxis, respectively. HIV envelope-induced cellular association of FAK and CCR5 was also demonstrated, suggesting that ligation of CD4 and CCR5 leads to the formation of an activation complex composed of FAK and CCR5. Activation of this signaling pathway by HIV-1 envelope may be an important pathogenic mechanism of dysregulated cellular activation and trafficking during HIV infection.
1999
Cicala, C; Arthos, J; Ruiz, M; Vaccarezza, M; Rubbert, A; Riva, A; Wildt, K; Cohen, ; O, ; Fauci, As.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2412105
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 84
social impact