The development of cracks and distortions caused by past seismic events compromised the integrity of the rose window of Troia Cathedral, one of the most precious Romanesque monuments in southern Italy. Ground-penetrating radar (GPR) using high-frequency antennae (mainly 1500 MHz) was selected from among various non-destructive testing methods for its high-resolution imaging to scan the internal structure of the various architectural elements of the wheel window: the decimetre-diameter columns constituting the rays, the ring decorated with intersecting arched ribwork and the surrounding circular ashlar curb. GPR was employed in the classical continuous reflection mode, moving the antennae manually along the architectural elements and paying exceptional care in the acquisition and processing stages to avoid positioning errors. Indeed, the challenging aspects of this case study were the geometrical complexity and small dimensions of the structural elements, causing many logistic/coupling problems. In spite of this, through proper interpretation techniques, based on signal analysis (presence of reflections and diffractions, velocity and attenuation variations) and correlation with features detected by visual inspection of the external surfaces, the GPR survey provided useful information on the internal structure of the rose window, detecting fractures and the boundaries of previously restored parts and locating hidden metallic components connecting the architectural elements. Information on the internal structure and spatial distribution of metallic junctions was essential for gaining insight into building techniques in order to discriminate between restoration strategies which may require either total or partial dismantling of the rose window. GPR results provided crucial evidence in favour of one of the (conflicting) hypotheses about the original building techniques, leading to the selection of partial dismantling as the most suitable restoration strategy. Analysis of measurements revealed the potential of GPR in the field of cultural heritage restoration, even in those cases characterized by complex geometry, structural brittleness and logistic difficulties, such as that discussed in this paper.

Investigations for the study and the restoration of the Rose Window of Troia Cathedral (Southern Italy)

RIZZO E
2007

Abstract

The development of cracks and distortions caused by past seismic events compromised the integrity of the rose window of Troia Cathedral, one of the most precious Romanesque monuments in southern Italy. Ground-penetrating radar (GPR) using high-frequency antennae (mainly 1500 MHz) was selected from among various non-destructive testing methods for its high-resolution imaging to scan the internal structure of the various architectural elements of the wheel window: the decimetre-diameter columns constituting the rays, the ring decorated with intersecting arched ribwork and the surrounding circular ashlar curb. GPR was employed in the classical continuous reflection mode, moving the antennae manually along the architectural elements and paying exceptional care in the acquisition and processing stages to avoid positioning errors. Indeed, the challenging aspects of this case study were the geometrical complexity and small dimensions of the structural elements, causing many logistic/coupling problems. In spite of this, through proper interpretation techniques, based on signal analysis (presence of reflections and diffractions, velocity and attenuation variations) and correlation with features detected by visual inspection of the external surfaces, the GPR survey provided useful information on the internal structure of the rose window, detecting fractures and the boundaries of previously restored parts and locating hidden metallic components connecting the architectural elements. Information on the internal structure and spatial distribution of metallic junctions was essential for gaining insight into building techniques in order to discriminate between restoration strategies which may require either total or partial dismantling of the rose window. GPR results provided crucial evidence in favour of one of the (conflicting) hypotheses about the original building techniques, leading to the selection of partial dismantling as the most suitable restoration strategy. Analysis of measurements revealed the potential of GPR in the field of cultural heritage restoration, even in those cases characterized by complex geometry, structural brittleness and logistic difficulties, such as that discussed in this paper.
2007
N., Masini; L., Nuzzo; Rizzo, E
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2409997
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 29
social impact