Cutaneous melanomas frequently metastasize to the brain, with temozolomide (TMZ) plus radiotherapy (RT) offering little control of these lesions. We tested whether trehalose, a natural glucose disaccharide proved to induce autophagy, could enhance the effect of TMZ and ionizing radiation (IR). In two melanoma cell lines (A375 and SK-Mel-28), which greatly differ in chemosensitivity and radiosensitivity, trehalose significantly inhibited short-term cell proliferation and also enhanced IR-induced cytostasis. Interestingly, in TMZ-resistant SK-Mel-28 cells, trehalose was more effective than TMZ, and combined trehalose + TMZ further reduced cell proliferation. In long-term experiments, colony-forming capacity was dramatically reduced by trehalose, and even more by combined trehalose + TMZ or trehalose + IR. In resistant SK-Mel-28 cells, although growth was inhibited most with trehalose + TMZ + IR-6 Gy combined treatment, it is notable that trehalose + TMZ treatment was also very effective. Along with a direct antiproliferative effect, two further mechanisms may explain how trehalose potentiates TMZ- and IR-induced effects: the remarkable trehalose-stimulated autophagy in A375 cells, which were sensitive to TMZ- and IR-induced apoptosis; and the notable trehalose-stimulated premature senescence in SK-Mel-28 cells, which were resistant to apoptosis and less prone to autophagy. In normal melanocytes, trehalose induced a minor autophagy and cell proliferation inhibition, without affecting cell viability; moreover, when trehalose was used in combination with TMZ, the slight TMZ-induced cytotoxicity was not significantly reinforced. Together, our results suggest that trehalose, a safe nutrient supplement able to cross the blood-brain barrier, is a promising candidate, worthy to be further explored in vivo, to augment the therapeutic efficacy of TMZ and RT in melanoma brain metastases.
Trehalose inhibits cell proliferation and amplifies temozolomide- and radiation-induced cytotoxicity in melanoma cells: a role for autophagy and premature senescence
Valacchi G
;
2019
Abstract
Cutaneous melanomas frequently metastasize to the brain, with temozolomide (TMZ) plus radiotherapy (RT) offering little control of these lesions. We tested whether trehalose, a natural glucose disaccharide proved to induce autophagy, could enhance the effect of TMZ and ionizing radiation (IR). In two melanoma cell lines (A375 and SK-Mel-28), which greatly differ in chemosensitivity and radiosensitivity, trehalose significantly inhibited short-term cell proliferation and also enhanced IR-induced cytostasis. Interestingly, in TMZ-resistant SK-Mel-28 cells, trehalose was more effective than TMZ, and combined trehalose + TMZ further reduced cell proliferation. In long-term experiments, colony-forming capacity was dramatically reduced by trehalose, and even more by combined trehalose + TMZ or trehalose + IR. In resistant SK-Mel-28 cells, although growth was inhibited most with trehalose + TMZ + IR-6 Gy combined treatment, it is notable that trehalose + TMZ treatment was also very effective. Along with a direct antiproliferative effect, two further mechanisms may explain how trehalose potentiates TMZ- and IR-induced effects: the remarkable trehalose-stimulated autophagy in A375 cells, which were sensitive to TMZ- and IR-induced apoptosis; and the notable trehalose-stimulated premature senescence in SK-Mel-28 cells, which were resistant to apoptosis and less prone to autophagy. In normal melanocytes, trehalose induced a minor autophagy and cell proliferation inhibition, without affecting cell viability; moreover, when trehalose was used in combination with TMZ, the slight TMZ-induced cytotoxicity was not significantly reinforced. Together, our results suggest that trehalose, a safe nutrient supplement able to cross the blood-brain barrier, is a promising candidate, worthy to be further explored in vivo, to augment the therapeutic efficacy of TMZ and RT in melanoma brain metastases.File | Dimensione | Formato | |
---|---|---|---|
Allavena_et_al-2019-Journal_of_Cellular_Physiology.pdf
solo gestori archivio
Descrizione: editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.