A side-to-face array DPy-gPBI[Ru(4-tBuTPP)(CO)]2, based on a “green” perylene bisimide chromophore sandwiched between two RuII-porphyrins, has been prepared by self-assembly. Its photophysical properties have been characterized in detail by a combination of steady-state and time-resolved techniques upon selective excitation of the two different components. Different photoinduced processes are observed as a function of the excitation wavelength. Electron transfer quenching is attained upon “red light” excitation of the perylene unit, whilst an energy transfer pathway is followed upon “green light” excitation of the metallo-porphyrin moiety. Regardless of the excitation wavelength efficient population of the triplet excited state of the perylene chromophore is achieved. The photophysical results are discussed within the framework of classical electron transfer theory and compared with those of a previously reported system.
Photoinduced Energy- and Electron-Transfer Processes in a Side-to-Face Ru II-Porphyrin/Perylene-bisimide Array
Mirco Natali
Secondo
;Maria Teresa Indelli;
2019
Abstract
A side-to-face array DPy-gPBI[Ru(4-tBuTPP)(CO)]2, based on a “green” perylene bisimide chromophore sandwiched between two RuII-porphyrins, has been prepared by self-assembly. Its photophysical properties have been characterized in detail by a combination of steady-state and time-resolved techniques upon selective excitation of the two different components. Different photoinduced processes are observed as a function of the excitation wavelength. Electron transfer quenching is attained upon “red light” excitation of the perylene unit, whilst an energy transfer pathway is followed upon “green light” excitation of the metallo-porphyrin moiety. Regardless of the excitation wavelength efficient population of the triplet excited state of the perylene chromophore is achieved. The photophysical results are discussed within the framework of classical electron transfer theory and compared with those of a previously reported system.File | Dimensione | Formato | |
---|---|---|---|
cphc.201900611_Natali2019.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.36 MB
Formato
Adobe PDF
|
3.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cphc.201900611_AAM.pdf
accesso aperto
Descrizione: post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.