Aims: Mechanical properties along the length of latest generation “multi-force” archwires were measured and compare with commercially available thermally activated and non-thermally activated nickel-titanium (NiTi) archwires. Materials and methods: A modified deflection test was used to produce load/deflection curves for different positions along the lengths of a sample of 114 NiTi archwires composed by thermal NiTi, non-thermal NiTi, two types of multi-force NiTi and one type of multi-force copper archwires of various cross-sections (0.016 × 0.016 inch, 0.016 × 0.022 inch, 0.018 × 0.025 inch and 0.019 × 0.025 inch). The length, slope and mean force expressed were calculated from the resulting unloading plateaus, enabling comparison between types of archwire at different points along their lengths. Results: Among conventional thermal, conventional nonthermal and multiforce archwires, all parameters investigated were statistically different, whereby the performance of the latter was superior. Multi-force archwires displayed 27% and 31% lighter mean forces in the upper and lower arches, respectively, in addition to 62% and 40% reductions in unloading plateau slope and length, respectively, as compared to conventional CuNiTi wires. Comparison of the different types of multi-force wires tested revealed statistically significant differences in the three parameters, depending on the testing position but irrespective of their cross-section. Conclusions: Although conventional archwires display identical behaviour along their lengths, as advertised the multi-force archwires do indeed exert a progressive force which differs between anterior, medial and posterior sections. The multi-force wires provide lighter, more prolonged and constant forces than conventional wires without cross-section-dependent variation.

Mechanical properties of multi-force vs. conventional NiTi archwires

Lombardo L.
Primo
;
Mollica F.;Mazzanti V.;Palone M.
Penultimo
;
Siciliani G.
Ultimo
2019

Abstract

Aims: Mechanical properties along the length of latest generation “multi-force” archwires were measured and compare with commercially available thermally activated and non-thermally activated nickel-titanium (NiTi) archwires. Materials and methods: A modified deflection test was used to produce load/deflection curves for different positions along the lengths of a sample of 114 NiTi archwires composed by thermal NiTi, non-thermal NiTi, two types of multi-force NiTi and one type of multi-force copper archwires of various cross-sections (0.016 × 0.016 inch, 0.016 × 0.022 inch, 0.018 × 0.025 inch and 0.019 × 0.025 inch). The length, slope and mean force expressed were calculated from the resulting unloading plateaus, enabling comparison between types of archwire at different points along their lengths. Results: Among conventional thermal, conventional nonthermal and multiforce archwires, all parameters investigated were statistically different, whereby the performance of the latter was superior. Multi-force archwires displayed 27% and 31% lighter mean forces in the upper and lower arches, respectively, in addition to 62% and 40% reductions in unloading plateau slope and length, respectively, as compared to conventional CuNiTi wires. Comparison of the different types of multi-force wires tested revealed statistically significant differences in the three parameters, depending on the testing position but irrespective of their cross-section. Conclusions: Although conventional archwires display identical behaviour along their lengths, as advertised the multi-force archwires do indeed exert a progressive force which differs between anterior, medial and posterior sections. The multi-force wires provide lighter, more prolonged and constant forces than conventional wires without cross-section-dependent variation.
2019
Lombardo, L.; Ceci, M.; Mollica, F.; Mazzanti, V.; Palone, M.; Siciliani, G.
File in questo prodotto:
File Dimensione Formato  
Lombardo2019_Article_MechanicalPropertiesOfMulti-fo.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2406707
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 13
social impact