Variable oxygen release from the root of macrophytes growing in ammonium-rich organic substrates can stimulate the process of nitrification. To verify this hypothesis, we performed seasonal measurements of potential nitrification activity in sediments with and without the perennial submersed plant Vallisneria spiralis L. (Hydrocharitaceae). Pore water and sediment features were simultaneously considered in order to provide insights into the regulation of the process. Results demonstrated a significant effect of season and plant presence on potential nitrification activity, with higher rates in winter and lower rates in summer. Vegetated sediment displayed lower pore water ammonium, but always higher potential nitrification activity compared to the unvegetated substrate, regardless the season. Nitrification activity was strongly correlated with pore water redox status, which were affected by both season and plant presence. Along its annual cycle V. spiralis promoted more oxidized conditions in the rhizosphere likely due to elevated radial oxygen loss and the consequent maintenance of a larger nitrifying community. These outcomes confirm the results of a limited number of studies that demonstrated how sediment biogeochemistry may be controlled by plant-released oxygen also in organic-rich systems. © 2013 Springer Science+Business Media Dordrecht.

Seasonal regulation of nitrification in a rooted macrophyte (Vallisneria spiralis L.) meadow under eutrophic conditions

Soana E.
Primo
;
2014

Abstract

Variable oxygen release from the root of macrophytes growing in ammonium-rich organic substrates can stimulate the process of nitrification. To verify this hypothesis, we performed seasonal measurements of potential nitrification activity in sediments with and without the perennial submersed plant Vallisneria spiralis L. (Hydrocharitaceae). Pore water and sediment features were simultaneously considered in order to provide insights into the regulation of the process. Results demonstrated a significant effect of season and plant presence on potential nitrification activity, with higher rates in winter and lower rates in summer. Vegetated sediment displayed lower pore water ammonium, but always higher potential nitrification activity compared to the unvegetated substrate, regardless the season. Nitrification activity was strongly correlated with pore water redox status, which were affected by both season and plant presence. Along its annual cycle V. spiralis promoted more oxidized conditions in the rhizosphere likely due to elevated radial oxygen loss and the consequent maintenance of a larger nitrifying community. These outcomes confirm the results of a limited number of studies that demonstrated how sediment biogeochemistry may be controlled by plant-released oxygen also in organic-rich systems. © 2013 Springer Science+Business Media Dordrecht.
2014
Soana, E.; Bartoli, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2406479
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact