Background: The pressure-volume (P-V) curve has been suggested as a bedside tool to set mechanical ventilation; however, it reflects a global behavior of the lung without giving information on the regional mechanical properties. Regional P-V (PVr) curves derived from electrical impedance tomography (EIT) could provide valuable clinical information at bedside, being able to explore the regional mechanics of the lung. In the present study, we hypothesized that regional P-V curves would provide different information from those obtained from global P-V curves, both in terms of upper and lower inflection points. Therefore, we constructed pressure-volume curves for each pixel row from non-dependent to dependent lung regions of patients affected by acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS). Methods: We analyzed slow-inflation P-V maneuvers data from 12 mechanically ventilated patients. During the inflation, the pneumotachograph was used to record flow and airway pressure while the EIT signals were recorded digitally. From each maneuver, global respiratory system P-V curve (PVg) and PVr curves were obtained, each one corresponding to a pixel row within the EIT image. PVg and PVr curves were fitted using a sigmoidal equation, and the upper (UIP) and lower (LIP) inflection points for each curve were mathematically identified; LIP and UIP from PVg were respectively called LIPg and UIPg. From each measurement, the highest regional LIP (LIPr MAX ) and the lowest regional UIP (UIPr MIN ) were identified and the pressure difference between those two points was defined as linear driving pressure (ΔP LIN ). Results: A significant difference (p < 0.001) was found between LIPr MAX (15.8 [9.2-21.1] cmH 2 O) and LIPg (2.9 [2.2-8.9] cmH 2 O); in all measurements, the LIPr MAX was higher than the corresponding LIPg. We found a significant difference (p < 0.005) between UIPr MIN (30.1 [23.5-37.6] cmH 2 O) and UIPg (40.5 [34.2-45] cmH 2 O), the UIPr MIN always being lower than the corresponding UIPg. Median ΔP LIN was 12.6 [7.4-20.8] cmH 2 O and in 56% of cases was < 14 cmH 2 O. Conclusions: Regional inflection points derived by EIT show high variability reflecting lung heterogeneity. Regional P-V curves obtained by EIT could convey more sensitive information than global lung mechanics on the pressures within which all lung regions express linear compliance. Trial registration: Clinicaltrials.gov, NCT02907840. Registered on 20 September 2016.

Heterogeneity of regional inflection points from pressure-volume curves assessed by electrical impedance tomography

Scaramuzzo, Gaetano
Primo
;
Spadaro, Savino
Secondo
;
Ragazzi, Riccardo
Membro del Collaboration Group
;
Volta, Carlo Alberto
Ultimo
2019

Abstract

Background: The pressure-volume (P-V) curve has been suggested as a bedside tool to set mechanical ventilation; however, it reflects a global behavior of the lung without giving information on the regional mechanical properties. Regional P-V (PVr) curves derived from electrical impedance tomography (EIT) could provide valuable clinical information at bedside, being able to explore the regional mechanics of the lung. In the present study, we hypothesized that regional P-V curves would provide different information from those obtained from global P-V curves, both in terms of upper and lower inflection points. Therefore, we constructed pressure-volume curves for each pixel row from non-dependent to dependent lung regions of patients affected by acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS). Methods: We analyzed slow-inflation P-V maneuvers data from 12 mechanically ventilated patients. During the inflation, the pneumotachograph was used to record flow and airway pressure while the EIT signals were recorded digitally. From each maneuver, global respiratory system P-V curve (PVg) and PVr curves were obtained, each one corresponding to a pixel row within the EIT image. PVg and PVr curves were fitted using a sigmoidal equation, and the upper (UIP) and lower (LIP) inflection points for each curve were mathematically identified; LIP and UIP from PVg were respectively called LIPg and UIPg. From each measurement, the highest regional LIP (LIPr MAX ) and the lowest regional UIP (UIPr MIN ) were identified and the pressure difference between those two points was defined as linear driving pressure (ΔP LIN ). Results: A significant difference (p < 0.001) was found between LIPr MAX (15.8 [9.2-21.1] cmH 2 O) and LIPg (2.9 [2.2-8.9] cmH 2 O); in all measurements, the LIPr MAX was higher than the corresponding LIPg. We found a significant difference (p < 0.005) between UIPr MIN (30.1 [23.5-37.6] cmH 2 O) and UIPg (40.5 [34.2-45] cmH 2 O), the UIPr MIN always being lower than the corresponding UIPg. Median ΔP LIN was 12.6 [7.4-20.8] cmH 2 O and in 56% of cases was < 14 cmH 2 O. Conclusions: Regional inflection points derived by EIT show high variability reflecting lung heterogeneity. Regional P-V curves obtained by EIT could convey more sensitive information than global lung mechanics on the pressures within which all lung regions express linear compliance. Trial registration: Clinicaltrials.gov, NCT02907840. Registered on 20 September 2016.
2019
Scaramuzzo, Gaetano; Spadaro, Savino; Waldmann, Andreas D.; Böhm, Stephan H.; Ragazzi, Riccardo; Marangoni, Elisabetta; Alvisi, Valentina; Spinelli, Elena; Mauri, Tommaso; Volta, Carlo Alberto
File in questo prodotto:
File Dimensione Formato  
2019 crit care.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2404100
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 30
social impact