Coastal environments are usually characterized by a brittle balance, especially in terms of sediment transportation. The formation of dunes, as well as their sudden destruction as a result of violent storms, affects this balance in a significant way. Moreover, the growth of vegetation on the top of the dunes strongly influences the consequent growth of the dunes themselves. This work presents the results obtained through a long-term monitoring of a complex dune system by the use of Unmanned Aerial Vehicles (UAVs). Six different surveys were carried out between November 2015 and December 2017 in the littoral of Rosolina Mare (Italy). Aerial photogrammetric data were acquired during flight repetitions by using a DJI Phantom 3 Professional with the camera in a nadiral arrangement. The processing of the captured images consisted of the reconstruction of a three-dimensional model using the Structure-from-Motion (SfM). Each model was framed in the European Terrestrial Reference System (ETRS) using GNSS geodetic receivers in Network Real Time Kinematic (NRTK). Specific data management was necessary due to the vegetation by filtering the dense cloud. This task was performed by both performing a slope detection and a removal of the residual outliers. The final products of this approach were thus represented by Digital Elevation Models (DEMs) of the sandy coastal section. In addition, DEMs of Difference (DoD) were also computed for the purpose of monitoring over time and detecting variations. The accuracy assessment of the DEMs was carried out by an elevation comparison through especially GNSS-surveyed points. Relevant cross sections were also extracted and compared. The use of the Structure-from-Motion approach by UAVs finally proved to be both reliable and time-saving thanks to quicker in situ operations for the data acquisition and an accurate reconstruction of high-resolution elevation models. The low cost of the system and its flexibility represent additional strengths, making this technique highly competitive with traditional ones.

UAVs for structure-from-motion coastal monitoring: A case study to assess the evolution of embryo dunes over a two-year time frame in the Po river delta, Italy

Yuri Taddia
Primo
;
Corinne Corbau
Secondo
;
Elena Zambello
Penultimo
;
Alberto Pellegrinelli
Ultimo
2019

Abstract

Coastal environments are usually characterized by a brittle balance, especially in terms of sediment transportation. The formation of dunes, as well as their sudden destruction as a result of violent storms, affects this balance in a significant way. Moreover, the growth of vegetation on the top of the dunes strongly influences the consequent growth of the dunes themselves. This work presents the results obtained through a long-term monitoring of a complex dune system by the use of Unmanned Aerial Vehicles (UAVs). Six different surveys were carried out between November 2015 and December 2017 in the littoral of Rosolina Mare (Italy). Aerial photogrammetric data were acquired during flight repetitions by using a DJI Phantom 3 Professional with the camera in a nadiral arrangement. The processing of the captured images consisted of the reconstruction of a three-dimensional model using the Structure-from-Motion (SfM). Each model was framed in the European Terrestrial Reference System (ETRS) using GNSS geodetic receivers in Network Real Time Kinematic (NRTK). Specific data management was necessary due to the vegetation by filtering the dense cloud. This task was performed by both performing a slope detection and a removal of the residual outliers. The final products of this approach were thus represented by Digital Elevation Models (DEMs) of the sandy coastal section. In addition, DEMs of Difference (DoD) were also computed for the purpose of monitoring over time and detecting variations. The accuracy assessment of the DEMs was carried out by an elevation comparison through especially GNSS-surveyed points. Relevant cross sections were also extracted and compared. The use of the Structure-from-Motion approach by UAVs finally proved to be both reliable and time-saving thanks to quicker in situ operations for the data acquisition and an accurate reconstruction of high-resolution elevation models. The low cost of the system and its flexibility represent additional strengths, making this technique highly competitive with traditional ones.
2019
Taddia, Yuri; Corbau, Corinne Sabine; Zambello, Elena; Pellegrinelli, Alberto
File in questo prodotto:
File Dimensione Formato  
sensors-19-01717.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 4.9 MB
Formato Adobe PDF
4.9 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2403755
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact