Accurately and efficiently modeling the drain-lag effects is crucial in nonlinear large-signal modeling for Gallium Nitride high electron mobility transistors. In this paper, a simplified yet accurate drain-lag model based on an industry standard large-signal model, i.e., the Chalmers (Angelov) model, extracted by means of pulsed S-parameter measurements, is presented. Instead of a complex nonlinear drain-lag description, only four constant parameters of the proposed drain-lag model need to be determined to accurately describe the large impacts of the drain-lag effects, e.g., drain-source current slump, typical kink observed in pulsed IV curves, and degradation of the output power. The extraction procedure of the parameters is based on pulsed S-parameter measurements, which allow to freeze traps and isolate the trapping effects from self-heating. It is also shown that the model can very accurately predict the load pull performance over a wide range of drain bias voltages. Finally, the large-signal network analyzer measurements at low frequency are used to further verify the proposed drain-lag model in the prediction of the output current in time domain under large-signal condition.

A streamlined drain-lag model for GaN HEMTs based on pulsed S-parameter measurements

Vadalà, Valeria;Raffo, Antonio;
2019

Abstract

Accurately and efficiently modeling the drain-lag effects is crucial in nonlinear large-signal modeling for Gallium Nitride high electron mobility transistors. In this paper, a simplified yet accurate drain-lag model based on an industry standard large-signal model, i.e., the Chalmers (Angelov) model, extracted by means of pulsed S-parameter measurements, is presented. Instead of a complex nonlinear drain-lag description, only four constant parameters of the proposed drain-lag model need to be determined to accurately describe the large impacts of the drain-lag effects, e.g., drain-source current slump, typical kink observed in pulsed IV curves, and degradation of the output power. The extraction procedure of the parameters is based on pulsed S-parameter measurements, which allow to freeze traps and isolate the trapping effects from self-heating. It is also shown that the model can very accurately predict the load pull performance over a wide range of drain bias voltages. Finally, the large-signal network analyzer measurements at low frequency are used to further verify the proposed drain-lag model in the prediction of the output current in time domain under large-signal condition.
2019
Luo, Peng; Schnieder, Frank; Bengtsson, Olof; Vadalà, Valeria; Raffo, Antonio; Heinrich, Wolfgang; Rudolph, Matthias
File in questo prodotto:
File Dimensione Formato  
S1759078719000060.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 753.15 kB
Formato Adobe PDF
753.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2401717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact