We present the first extensive radio to γ-ray observations of a fast-rising blue optical transient, AT 2018cow, over its first ∼100 days. AT 2018cow rose over a few days to a peak luminosity L pk ∼ 4 × 10 44 erg s -1 , exceeding that of superluminous supernovae (SNe), before declining as L ∝ t -2 . Initial spectra at δt ≲ 15 days were mostly featureless and indicated large expansion velocities v ∼ 0.1c and temperatures reaching T ∼ 3 × 10 4 K. Later spectra revealed a persistent optically thick photosphere and the emergence of H and He emission features with v ∼ 4000 km s -1 with no evidence for ejecta cooling. Our broadband monitoring revealed a hard X-ray spectral component at E ≥ 10 keV, in addition to luminous and highly variable soft X-rays, with properties unprecedented among astronomical transients. An abrupt change in the X-ray decay rate and variability appears to accompany the change in optical spectral properties. AT 2018cow showed bright radio emission consistent with the interaction of a blast wave with v sh ∼ 0.1c with a dense environment ( for v w = 1000 km s -1 ). While these properties exclude 56 Ni-powered transients, our multiwavelength analysis instead indicates that AT 2018cow harbored a "central engine," either a compact object (magnetar or black hole) or an embedded internal shock produced by interaction with a compact, dense circumstellar medium. The engine released ∼10 50 -10 51.5 erg over ∼10 3 -10 5 s and resides within low-mass fast-moving material with equatorial-polar density asymmetry (M ej,fast ≲ 0.3 M). Successful SNe from low-mass H-rich stars (like electron-capture SNe) or failed explosions from blue supergiants satisfy these constraints. Intermediate-mass black holes are disfavored by the large environmental density probed by the radio observations.

An Embedded X-Ray Source Shines through the Aspherical at 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients

C. Guidorzi;
2019

Abstract

We present the first extensive radio to γ-ray observations of a fast-rising blue optical transient, AT 2018cow, over its first ∼100 days. AT 2018cow rose over a few days to a peak luminosity L pk ∼ 4 × 10 44 erg s -1 , exceeding that of superluminous supernovae (SNe), before declining as L ∝ t -2 . Initial spectra at δt ≲ 15 days were mostly featureless and indicated large expansion velocities v ∼ 0.1c and temperatures reaching T ∼ 3 × 10 4 K. Later spectra revealed a persistent optically thick photosphere and the emergence of H and He emission features with v ∼ 4000 km s -1 with no evidence for ejecta cooling. Our broadband monitoring revealed a hard X-ray spectral component at E ≥ 10 keV, in addition to luminous and highly variable soft X-rays, with properties unprecedented among astronomical transients. An abrupt change in the X-ray decay rate and variability appears to accompany the change in optical spectral properties. AT 2018cow showed bright radio emission consistent with the interaction of a blast wave with v sh ∼ 0.1c with a dense environment ( for v w = 1000 km s -1 ). While these properties exclude 56 Ni-powered transients, our multiwavelength analysis instead indicates that AT 2018cow harbored a "central engine," either a compact object (magnetar or black hole) or an embedded internal shock produced by interaction with a compact, dense circumstellar medium. The engine released ∼10 50 -10 51.5 erg over ∼10 3 -10 5 s and resides within low-mass fast-moving material with equatorial-polar density asymmetry (M ej,fast ≲ 0.3 M). Successful SNe from low-mass H-rich stars (like electron-capture SNe) or failed explosions from blue supergiants satisfy these constraints. Intermediate-mass black holes are disfavored by the large environmental density probed by the radio observations.
2019
Margutti, Raffaella; Metzger, B. D.; Chornock, R.; Vurm, I.; Roth, N.; Grefenstette, B. W.; Savchenko, V.; Cartier, R.; Steiner, J. F.; Terreran, G.; Migliori, G.; Milisavljevic, D.; Alexander, K. D.; Bietenholz, M.; Blanchard, P. K.; Bozzo, E.; Brethauer, D.; Chilingarian, I. V.; Coppejans, D. L.; Ducci, L.; Ferrigno, C.; Fong, W.; Götz, D.; Guidorzi, C.; Hajela, A.; Hurley, K.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Nicholl, M.; Patnaude, D.; Ubertini, P.; Banovetz, J.; Bartel, N.; Berger, E.; Coughlin, E. R.; Eftekhari, T.; Frederiks, D. D.; Kozlova, A. V.; Laskar, T.; Svinkin, D. S.; Drout, M. R.; Macfadyen, A.; Paterson, K.
File in questo prodotto:
File Dimensione Formato  
margutti19_apj.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.03 MB
Formato Adobe PDF
4.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1810.10720.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 4.99 MB
Formato Adobe PDF
4.99 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2401680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 157
  • ???jsp.display-item.citation.isi??? 131
social impact