Background: Chronic intestinal pseudo-obstruction (CIPO) and enteric dysmotility (ED) are severe intestinal motility disorders usually associated with underlying neuromuscular abnormalities. Objective: To evaluate the in vitro neuromuscular function of patients with severe intestinal motility disorders. Methods: Full-thickness intestinal biopsies (16 jejunum and 3 ileum) obtained from patients with CIPO (n = 10) and ED (n = 9) were studied using muscle bath and microelectrode techniques. Control samples (n = 6 ileum and n = 6 jejunum) were used to establish the range of normality. Key Results: Fourteen parameters were defined to assess muscle contractility and nerve-muscle interaction: five to evaluate smooth muscle and interstitial cells of Cajal (ICC) and nine to evaluate inhibitory neuromuscular transmission. For each sample, a parameter was scored 0 if the value was inside the normal range or a value of 1 if it was outside. Patients’ samples (CIPO/ED) had more abnormal parameters than controls (P < 0.001 for both jejunum and ileum). Functional abnormalities were found to be heterogeneous. The most prevalent abnormality was a decreased purinergic neuromuscular transmission, which was detected in 43.8% of jejunal samples. Conclusions and Inferences: Abnormalities of neuromuscular intestinal function are detected in vitro in severe intestinal dysmotility. However, consistent with the heterogeneity of the disease pathophysiology, functional impairment cannot be attributed to a single mechanism. Specifically, defects of purinergic neuromuscular transmission may have an important role in motility disorders of the gastrointestinal tract.
Functional neuromuscular impairment in severe intestinal dysmotility
De Giorgio, RobertoPenultimo
;
2018
Abstract
Background: Chronic intestinal pseudo-obstruction (CIPO) and enteric dysmotility (ED) are severe intestinal motility disorders usually associated with underlying neuromuscular abnormalities. Objective: To evaluate the in vitro neuromuscular function of patients with severe intestinal motility disorders. Methods: Full-thickness intestinal biopsies (16 jejunum and 3 ileum) obtained from patients with CIPO (n = 10) and ED (n = 9) were studied using muscle bath and microelectrode techniques. Control samples (n = 6 ileum and n = 6 jejunum) were used to establish the range of normality. Key Results: Fourteen parameters were defined to assess muscle contractility and nerve-muscle interaction: five to evaluate smooth muscle and interstitial cells of Cajal (ICC) and nine to evaluate inhibitory neuromuscular transmission. For each sample, a parameter was scored 0 if the value was inside the normal range or a value of 1 if it was outside. Patients’ samples (CIPO/ED) had more abnormal parameters than controls (P < 0.001 for both jejunum and ileum). Functional abnormalities were found to be heterogeneous. The most prevalent abnormality was a decreased purinergic neuromuscular transmission, which was detected in 43.8% of jejunal samples. Conclusions and Inferences: Abnormalities of neuromuscular intestinal function are detected in vitro in severe intestinal dysmotility. However, consistent with the heterogeneity of the disease pathophysiology, functional impairment cannot be attributed to a single mechanism. Specifically, defects of purinergic neuromuscular transmission may have an important role in motility disorders of the gastrointestinal tract.File | Dimensione | Formato | |
---|---|---|---|
Neurogastroenterology Motil - 2018 - Gallego - Functional neuromuscular impairment in severe intestinal dysmotility.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.