The ability to understand intentions based on another's movements is crucial for human interaction. This ability has been ascribed to the so-called motor chaining mechanism: Anytime a motor chain is activated (e.g., grasp-To-drink), the observer attributes to the agent the corresponding intention (i.e., to drink) from the first motor act (i.e., the grasp). However, the mechanisms by which a specific chain is selected in the observer remain poorly understood. In the current study, we investigate the possibility that in the absence of discriminative contextual cues, slight kinematic variations in the observed grasp inform mapping to the most probable chain. Chaining of motor acts predicts that, in a sequential grasping task (e.g., grasp-To-drink), electromyographic (EMG) components that are required for the final act [e.g., the mouth-opening mylohyoid (MH) muscle] show anticipatory activation. To test this prediction, we used MH EMG, transcranial magnetic stimulation (TMS; MH motor-evoked potentials), and predictive models of movement kinematics to measure the level and timing of MH activation during the execution (Experiment 1) and the observation (Experiment 2) of reach-To-grasp actions. We found that MH-related corticobulbar excitability during grasping observation varied as a function of the goal (to drink or to pour) and the kinematics of the observed grasp. These results show that subtle changes in movement kinematics drive the selection of the most probable motor chain, allowing the observer to link an observed act to the agent's intention.

Movement kinematics drive chain selection toward intention detection

D'Ausilio, Alessandro;Fadiga, Luciano
Ultimo
2018

Abstract

The ability to understand intentions based on another's movements is crucial for human interaction. This ability has been ascribed to the so-called motor chaining mechanism: Anytime a motor chain is activated (e.g., grasp-To-drink), the observer attributes to the agent the corresponding intention (i.e., to drink) from the first motor act (i.e., the grasp). However, the mechanisms by which a specific chain is selected in the observer remain poorly understood. In the current study, we investigate the possibility that in the absence of discriminative contextual cues, slight kinematic variations in the observed grasp inform mapping to the most probable chain. Chaining of motor acts predicts that, in a sequential grasping task (e.g., grasp-To-drink), electromyographic (EMG) components that are required for the final act [e.g., the mouth-opening mylohyoid (MH) muscle] show anticipatory activation. To test this prediction, we used MH EMG, transcranial magnetic stimulation (TMS; MH motor-evoked potentials), and predictive models of movement kinematics to measure the level and timing of MH activation during the execution (Experiment 1) and the observation (Experiment 2) of reach-To-grasp actions. We found that MH-related corticobulbar excitability during grasping observation varied as a function of the goal (to drink or to pour) and the kinematics of the observed grasp. These results show that subtle changes in movement kinematics drive the selection of the most probable motor chain, allowing the observer to link an observed act to the agent's intention.
2018
Soriano, Marco; Cavallo, Andrea; D'Ausilio, Alessandro; Becchio, Cristina; Fadiga, Luciano
File in questo prodotto:
File Dimensione Formato  
10452.full.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 744.54 kB
Formato Adobe PDF
744.54 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2398491
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact