(−)-cis-N-Normetazocine represents a rigid scaffold able to mimic the tyramine moiety of endogenous opioid peptides, and the introduction of different N-substituents influences affinity and efficacy of respective ligands at MOR (mu opioid receptor), DOR (delta opioid receptor), and KOR (kappa opioid receptor). We have previously identified LP1, a MOR/DOR multitarget opioid ligand, with an N-phenylpropanamido substituent linked to (−)-cis-N-Normetazocine scaffold. Herein, we report the synthesis, competition binding and calcium mobilization assays of new compounds 10⁻16 that differ from LP1 by the nature of the N-substituent. In radioligand binding experiments, the compounds 10⁻13, featured by an electron-withdrawing or electron-donating group in the para position of phenyl ring, displayed improved affinity for KOR (Ki = 0.85⁻4.80 μM) in comparison to LP1 (7.5 μM). On the contrary, their MOR and DOR affinities were worse (Ki = 0.18⁻0.28 μM and Ki = 0.38⁻1.10 μM, respectively) with respect to LP1 values (Ki = 0.049 and 0.033 μM). Analogous trends was recorded for the compounds 14⁻16, featured by indoline, tetrahydroquinoline, and diphenylamine functionalities in the N-substituent. In calcium mobilization assays, the compound 10 with a p-fluorophenyl in the N-substituent shared the functional profile of LP1 (pEC50MOR = 7.01), although it was less active. Moreover, the p-methyl- (11) and p-cyano- (12) substituted compounds resulted in MOR partial agonists and DOR/KOR antagonists. By contrast, the derivatives 13⁻15 resulted as MOR antagonists, and the derivative 16 as a MOR/KOR antagonist (pKBMOR = 6.12 and pKBKOR = 6.11). Collectively, these data corroborated the critical role of the N-substituent in (−)-cis-N-Normetazocine scaffold. Thus, the new synthesized compounds could represent a template to achieve a specific agonist, antagonist, or mixed agonist/antagonist functional profile.
Synthesis and Structure-Activity Relationships of (-)-cis-N-Normetazocine-Based LP1 Derivatives
Camarda, Valeria;Calò, Girolamo;
2018
Abstract
(−)-cis-N-Normetazocine represents a rigid scaffold able to mimic the tyramine moiety of endogenous opioid peptides, and the introduction of different N-substituents influences affinity and efficacy of respective ligands at MOR (mu opioid receptor), DOR (delta opioid receptor), and KOR (kappa opioid receptor). We have previously identified LP1, a MOR/DOR multitarget opioid ligand, with an N-phenylpropanamido substituent linked to (−)-cis-N-Normetazocine scaffold. Herein, we report the synthesis, competition binding and calcium mobilization assays of new compounds 10⁻16 that differ from LP1 by the nature of the N-substituent. In radioligand binding experiments, the compounds 10⁻13, featured by an electron-withdrawing or electron-donating group in the para position of phenyl ring, displayed improved affinity for KOR (Ki = 0.85⁻4.80 μM) in comparison to LP1 (7.5 μM). On the contrary, their MOR and DOR affinities were worse (Ki = 0.18⁻0.28 μM and Ki = 0.38⁻1.10 μM, respectively) with respect to LP1 values (Ki = 0.049 and 0.033 μM). Analogous trends was recorded for the compounds 14⁻16, featured by indoline, tetrahydroquinoline, and diphenylamine functionalities in the N-substituent. In calcium mobilization assays, the compound 10 with a p-fluorophenyl in the N-substituent shared the functional profile of LP1 (pEC50MOR = 7.01), although it was less active. Moreover, the p-methyl- (11) and p-cyano- (12) substituted compounds resulted in MOR partial agonists and DOR/KOR antagonists. By contrast, the derivatives 13⁻15 resulted as MOR antagonists, and the derivative 16 as a MOR/KOR antagonist (pKBMOR = 6.12 and pKBKOR = 6.11). Collectively, these data corroborated the critical role of the N-substituent in (−)-cis-N-Normetazocine scaffold. Thus, the new synthesized compounds could represent a template to achieve a specific agonist, antagonist, or mixed agonist/antagonist functional profile.File | Dimensione | Formato | |
---|---|---|---|
Pasquinucci et al LP1 derivatives Pharmaceuticals 2018.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.