In this paper, we develop a stochastic Asymptotic-Preserving (sAP) scheme for the kinetic chemotaxis system with random inputs, which will converge to the modified Keller-Segel model with random inputs in the diffusive regime. Based on the generalized Polynomial Chaos (gPC) approach, we design a high order stochastic Galerkin method using implicit-explicit (IMEX) Runge-Kutta (RK) time discretization with a macroscopic penalty term. The new schemes improve the parabolic CFL condition to a hyperbolic type when the mean free path is small, which shows significant efficiency especially in uncertainty quantification (UQ) with multiscale problems. The sAP property will be shown asymptotically and verified numerically in several tests. Other numerical tests are conducted to explore the effect of the randomness in the kinetic system, with the goal of providing more intuition for the theoretic study of the chemotaxis models.

A High Order Stochastic Asymptotic Preserving Scheme for Chemotaxis Kinetic Models with Random Inputs

Pareschi, Lorenzo
Ultimo
2018

Abstract

In this paper, we develop a stochastic Asymptotic-Preserving (sAP) scheme for the kinetic chemotaxis system with random inputs, which will converge to the modified Keller-Segel model with random inputs in the diffusive regime. Based on the generalized Polynomial Chaos (gPC) approach, we design a high order stochastic Galerkin method using implicit-explicit (IMEX) Runge-Kutta (RK) time discretization with a macroscopic penalty term. The new schemes improve the parabolic CFL condition to a hyperbolic type when the mean free path is small, which shows significant efficiency especially in uncertainty quantification (UQ) with multiscale problems. The sAP property will be shown asymptotically and verified numerically in several tests. Other numerical tests are conducted to explore the effect of the randomness in the kinetic system, with the goal of providing more intuition for the theoretic study of the chemotaxis models.
2018
Jin, Shi; Lu, Hanqing; Pareschi, Lorenzo
File in questo prodotto:
File Dimensione Formato  
63d69eb41e9b373e86f67d2016f30af1.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri
1710.05722.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 809.6 kB
Formato Adobe PDF
809.6 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2397767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact