Let X[n] be the Fulton–MacPherson compactification of the configuration space of n ordered points on a smooth projective variety X. We prove that if either n≠2 or dim(X)≥2, then the connected component of the identity of Aut(X[n]) is isomorphic to the connected component of the identity of Aut(X). When X=C is a curve of genus g(C)≠1 we classify the dominant morphisms C[n]→C[r], and thanks to this we manage to compute the whole automorphism group of C[n], namely Aut(C[n])≅Sn×Aut(C) for any n≠2, while Aut(C[2])≅S2⋉(Aut(C)×Aut(C)). Furthermore, we extend these results on the automorphisms to the case where X=C1×&×Cr is a product of curves of genus g(Ci)≥2. Finally, using the techniques developed to deal with Fulton–MacPherson spaces, we study the automorphism groups of some Kontsevich moduli spaces M‾0,n(PN,d).
On the biregular geometry of the Fulton–MacPherson compactification
Massarenti, Alex
Primo
2017
Abstract
Let X[n] be the Fulton–MacPherson compactification of the configuration space of n ordered points on a smooth projective variety X. We prove that if either n≠2 or dim(X)≥2, then the connected component of the identity of Aut(X[n]) is isomorphic to the connected component of the identity of Aut(X). When X=C is a curve of genus g(C)≠1 we classify the dominant morphisms C[n]→C[r], and thanks to this we manage to compute the whole automorphism group of C[n], namely Aut(C[n])≅Sn×Aut(C) for any n≠2, while Aut(C[2])≅S2⋉(Aut(C)×Aut(C)). Furthermore, we extend these results on the automorphisms to the case where X=C1×&×Cr is a product of curves of genus g(Ci)≥2. Finally, using the techniques developed to deal with Fulton–MacPherson spaces, we study the automorphism groups of some Kontsevich moduli spaces M‾0,n(PN,d).File | Dimensione | Formato | |
---|---|---|---|
Alex_AIM.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
663.56 kB
Formato
Adobe PDF
|
663.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1603.06991.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
408.16 kB
Formato
Adobe PDF
|
408.16 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.