Let X[n] be the Fulton–MacPherson compactification of the configuration space of n ordered points on a smooth projective variety X. We prove that if either n≠2 or dim⁡(X)≥2, then the connected component of the identity of Aut(X[n]) is isomorphic to the connected component of the identity of Aut(X). When X=C is a curve of genus g(C)≠1 we classify the dominant morphisms C[n]→C[r], and thanks to this we manage to compute the whole automorphism group of C[n], namely Aut(C[n])≅Sn×Aut(C) for any n≠2, while Aut(C[2])≅S2⋉(Aut(C)×Aut(C)). Furthermore, we extend these results on the automorphisms to the case where X=C1×&×Cr is a product of curves of genus g(Ci)≥2. Finally, using the techniques developed to deal with Fulton–MacPherson spaces, we study the automorphism groups of some Kontsevich moduli spaces M‾0,n(PN,d).

On the biregular geometry of the Fulton–MacPherson compactification

Massarenti, Alex
Primo
2017

Abstract

Let X[n] be the Fulton–MacPherson compactification of the configuration space of n ordered points on a smooth projective variety X. We prove that if either n≠2 or dim⁡(X)≥2, then the connected component of the identity of Aut(X[n]) is isomorphic to the connected component of the identity of Aut(X). When X=C is a curve of genus g(C)≠1 we classify the dominant morphisms C[n]→C[r], and thanks to this we manage to compute the whole automorphism group of C[n], namely Aut(C[n])≅Sn×Aut(C) for any n≠2, while Aut(C[2])≅S2⋉(Aut(C)×Aut(C)). Furthermore, we extend these results on the automorphisms to the case where X=C1×&×Cr is a product of curves of genus g(Ci)≥2. Finally, using the techniques developed to deal with Fulton–MacPherson spaces, we study the automorphism groups of some Kontsevich moduli spaces M‾0,n(PN,d).
2017
Massarenti, Alex
File in questo prodotto:
File Dimensione Formato  
Alex_AIM.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 663.56 kB
Formato Adobe PDF
663.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1603.06991.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 408.16 kB
Formato Adobe PDF
408.16 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2396137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact