In the analyses presented, the soil-structure interaction is accounted for by means of a FE-BIE approach, in which the structure is modelled with displacement-based beam finite elements, whereas the boundary between structure and substrate is described in terms of surface tractions by means of a boundary integral equation incorporating a suitable Green's function. This mixed formulation ensures full continuity between structure and substrate in terms of displacements and rotations. To take account of structural nonlinearities, potential plastic hinges are defined at the end sections of the beam elements in the form of semi-rigid connections characterized by a rigidplastic moment-rotation relationship. The incremental analyses carried out emphasize the effectiveness of the model in reproducing collapse mechanisms and stiffness loss of the structure for increasing loads. Moreover, the adopted formulation is able to capture both interfacial shear tractions and vertical normal tractions which develop along the substrate boundary under a variety of loading conditions.

Nonlinear analysis of RC box culverts resting on a linear elastic soil

Fabio Minghini
Secondo
;
Nerio Tullini
Ultimo
2018

Abstract

In the analyses presented, the soil-structure interaction is accounted for by means of a FE-BIE approach, in which the structure is modelled with displacement-based beam finite elements, whereas the boundary between structure and substrate is described in terms of surface tractions by means of a boundary integral equation incorporating a suitable Green's function. This mixed formulation ensures full continuity between structure and substrate in terms of displacements and rotations. To take account of structural nonlinearities, potential plastic hinges are defined at the end sections of the beam elements in the form of semi-rigid connections characterized by a rigidplastic moment-rotation relationship. The incremental analyses carried out emphasize the effectiveness of the model in reproducing collapse mechanisms and stiffness loss of the structure for increasing loads. Moreover, the adopted formulation is able to capture both interfacial shear tractions and vertical normal tractions which develop along the substrate boundary under a variety of loading conditions.
2018
Baraldi, Daniele; Minghini, Fabio; Tezzon, Enrico; Tullini, Nerio
File in questo prodotto:
File Dimensione Formato  
Nonlinear analysis of RC box culverts resting on a linear elastic soil.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 529.39 kB
Formato Adobe PDF
529.39 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2390466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact