Numerical simulations of components subjected to cyclic thermo-mechanical loads require an accurate modelling of their cyclic plasticity behaviour. Combined models permit to capture monotonic hardening as well as cyclic hardening/softening phenomena, that occur in reality. In principle the durability assessment of a component under thermal loads can be performed only if the cyclic behaviour is simulated until complete material stabilization. As materials stabilize approximately at half the number of cycles to failure, it follows that in case of small plastic strains a huge number of cycles must be considered and an unfeasible simulation time would be required. Accelerated models have thus been proposed in literature. The aim of this work is that of comparing the different acceleration techniques in the case a round mould for continuous casting loaded thermo-mechanically. It can be observed that the usual approach of using the stabilized stress-strain curve already from the first cycle could lead to relevant errors. An alternative method is that of increasing the value of the parameter that controls the speed of stabilization in the combined model. This approach permits the number of cycles to reach stabilization to be drastically reduced, without affecting the overall mechanical behaviour. Based on this approach, a simple design rule, that can be adopted, particularly when relatively small plastic strains occur, is finally proposed.

Acceleration techniques for the numerical simulation of the cyclic plasticity behaviour of mechanical components under thermal loads

Benasciutti, Denis
Penultimo
;
2018

Abstract

Numerical simulations of components subjected to cyclic thermo-mechanical loads require an accurate modelling of their cyclic plasticity behaviour. Combined models permit to capture monotonic hardening as well as cyclic hardening/softening phenomena, that occur in reality. In principle the durability assessment of a component under thermal loads can be performed only if the cyclic behaviour is simulated until complete material stabilization. As materials stabilize approximately at half the number of cycles to failure, it follows that in case of small plastic strains a huge number of cycles must be considered and an unfeasible simulation time would be required. Accelerated models have thus been proposed in literature. The aim of this work is that of comparing the different acceleration techniques in the case a round mould for continuous casting loaded thermo-mechanically. It can be observed that the usual approach of using the stabilized stress-strain curve already from the first cycle could lead to relevant errors. An alternative method is that of increasing the value of the parameter that controls the speed of stabilization in the combined model. This approach permits the number of cycles to reach stabilization to be drastically reduced, without affecting the overall mechanical behaviour. Based on this approach, a simple design rule, that can be adopted, particularly when relatively small plastic strains occur, is finally proposed.
2018
Chemistry (all); Materials Science (all); Engineering (all)
File in questo prodotto:
File Dimensione Formato  
2018_SRNEC etal_Accelerated techniques cyclic plasticity_Fatigue2018_MATEC 2018.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 849.41 kB
Formato Adobe PDF
849.41 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2390375
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact