ATP, which is released under pathological conditions and is considered a damage-associated molecular pattern (DAMP), activates P2X7 receptors (P2X7Rs), trimeric plasma membrane ion channels selective for small cations. P2X7Rs are partners in NOD-like receptor containing a pyrin (NLRP3) inflammasome activation and promoters of tumor cell growth. P2X7R overstimulation triggers the ATP-dependent opening of a nonselective plasma membrane pore, known as a ‘macropore’, which allows fluxes of large hydrophilic molecules. The pathophysiological functions of P2X7R are thought to be dependent on activation of this conductance pathway, yet its molecular identity is unknown. Recent reports show that P2X7R permeability to organic solutes is an early and intrinsic property of the channel itself. A better understanding of P2X7R-dependent changes in plasma membrane permeability will allow a rationale development of novel anti-inflammatory and anticancer drugs.
The Elusive P2X7 Macropore
Di Virgilio, Francesco
Primo
;
2018
Abstract
ATP, which is released under pathological conditions and is considered a damage-associated molecular pattern (DAMP), activates P2X7 receptors (P2X7Rs), trimeric plasma membrane ion channels selective for small cations. P2X7Rs are partners in NOD-like receptor containing a pyrin (NLRP3) inflammasome activation and promoters of tumor cell growth. P2X7R overstimulation triggers the ATP-dependent opening of a nonselective plasma membrane pore, known as a ‘macropore’, which allows fluxes of large hydrophilic molecules. The pathophysiological functions of P2X7R are thought to be dependent on activation of this conductance pathway, yet its molecular identity is unknown. Recent reports show that P2X7R permeability to organic solutes is an early and intrinsic property of the channel itself. A better understanding of P2X7R-dependent changes in plasma membrane permeability will allow a rationale development of novel anti-inflammatory and anticancer drugs.File | Dimensione | Formato | |
---|---|---|---|
elusiveP2X7 macropore.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.8 MB
Formato
Adobe PDF
|
2.8 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.