The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases' lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.

Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review

Gemmati, Donato
Conceptualization
;
Zamboni, Paolo
Conceptualization
;
2018

Abstract

The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases' lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.
2018
Sheykhansari, Sahar; Kozielski, Kristen; Bill, Joachim; Sitti, Metin; Gemmati, Donato; Zamboni, Paolo; Singh, Ajay Vikram
File in questo prodotto:
File Dimensione Formato  
Cell Death and Disease_2018.pdf

accesso aperto

Descrizione: Full manuscript
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2384330
Citazioni
  • ???jsp.display-item.citation.pmc??? 39
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 83
social impact