In this paper we report an overview of the main outcomes of a 3-years experimental cultivation carried out in an Italian reclaimed agricultural field amended with different types of zeolitites (rock containing[50% of zeolites), under cereals cultivation (Sorghum vulgare Pers, Zea mays and Triticum durum). The aim of the experiment was to exploit the properties of zeolite-rich volcanic rocks (zeolitites) for reducing the excessively high NO3- content in the soil and in waters flowing out the sub-surface drainage system of the field and flushing into the surface water system, reducing concomitantly also chemical fertilization application rates (up to 50%). Zeolitites were tested both in their natural state and in a NH4-enriched form, obtained through an enrichment process with NH4-rich zoo-technical effluents (pig slurry). NO3- content in soils and in waters discharged through SSDS were periodically monitored during the experimentation and crop yield quantified. Results showed that, for three consecutive cultivation cycles, the overall NO3- concentrations in water extracts was reduced by 45% in the zeolitite treated soils, while in SSDS waters the reduction reached the 64%. Notwithstanding the lower N input from chemical fertilizers, crop yield was not negatively affected in the zeolitite amended soils with respect to the control. Zeolitite addition increased thus soil NH4+ retention and probably influenced several pathways of N losses, allowing a better fertilizer use efficiency by plants and a reduction of the overall NO3- concentrations in the surface waters.

Natural and NH4+-enriched zeolitite amendment effects on nitrate leaching from a reclaimed agricultural soil (Ferrara Province, Italy)

Faccini, Barbara
Primo
;
Di Giuseppe, Dario;Ferretti, Giacomo;Coltorti, Massimo;Colombani, Nicolò;Mastrocicco, Micòl
Ultimo
2018

Abstract

In this paper we report an overview of the main outcomes of a 3-years experimental cultivation carried out in an Italian reclaimed agricultural field amended with different types of zeolitites (rock containing[50% of zeolites), under cereals cultivation (Sorghum vulgare Pers, Zea mays and Triticum durum). The aim of the experiment was to exploit the properties of zeolite-rich volcanic rocks (zeolitites) for reducing the excessively high NO3- content in the soil and in waters flowing out the sub-surface drainage system of the field and flushing into the surface water system, reducing concomitantly also chemical fertilization application rates (up to 50%). Zeolitites were tested both in their natural state and in a NH4-enriched form, obtained through an enrichment process with NH4-rich zoo-technical effluents (pig slurry). NO3- content in soils and in waters discharged through SSDS were periodically monitored during the experimentation and crop yield quantified. Results showed that, for three consecutive cultivation cycles, the overall NO3- concentrations in water extracts was reduced by 45% in the zeolitite treated soils, while in SSDS waters the reduction reached the 64%. Notwithstanding the lower N input from chemical fertilizers, crop yield was not negatively affected in the zeolitite amended soils with respect to the control. Zeolitite addition increased thus soil NH4+ retention and probably influenced several pathways of N losses, allowing a better fertilizer use efficiency by plants and a reduction of the overall NO3- concentrations in the surface waters.
2018
Faccini, Barbara; Di Giuseppe, Dario; Ferretti, Giacomo; Coltorti, Massimo; Colombani, Nicolò; Mastrocicco, Micòl
File in questo prodotto:
File Dimensione Formato  
Faccini2018_Article_NaturalAndNH4-enrichedZeolitit.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Faccini et al_revised Dec 2017_final.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 466.75 kB
Formato Adobe PDF
466.75 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2383398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact