The overarching goal of this paper is to link the notion of sets of finite perimeter (a concept associated with N1,1-spaces) and the theory of heat semigroups (a concept related to N1,2-spaces) in the setting of metric measure spaces whose measure is doubling and supports a 1-Poincaré inequality. We prove a characterization of sets of finite perimeter in terms of a short time behavior of the heat semigroup in such metric spaces. We also give a new characterization of BV functions in terms of a near-diagonal energy in this general setting.
Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces
Miranda, Michele;
2016
Abstract
The overarching goal of this paper is to link the notion of sets of finite perimeter (a concept associated with N1,1-spaces) and the theory of heat semigroups (a concept related to N1,2-spaces) in the setting of metric measure spaces whose measure is doubling and supports a 1-Poincaré inequality. We prove a characterization of sets of finite perimeter in terms of a short time behavior of the heat semigroup in such metric spaces. We also give a new characterization of BV functions in terms of a near-diagonal energy in this general setting.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Marola2016_Article_CharacterizationsOfSetsOfFinit.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
415.32 kB
Formato
Adobe PDF
|
415.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
MMSMarch2016PArevision_2_.pdf
accesso aperto
Descrizione: Post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
390.85 kB
Formato
Adobe PDF
|
390.85 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.