The overarching goal of this paper is to link the notion of sets of finite perimeter (a concept associated with N1,1-spaces) and the theory of heat semigroups (a concept related to N1,2-spaces) in the setting of metric measure spaces whose measure is doubling and supports a 1-Poincaré inequality. We prove a characterization of sets of finite perimeter in terms of a short time behavior of the heat semigroup in such metric spaces. We also give a new characterization of BV functions in terms of a near-diagonal energy in this general setting.

Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces

Miranda, Michele;
2016

Abstract

The overarching goal of this paper is to link the notion of sets of finite perimeter (a concept associated with N1,1-spaces) and the theory of heat semigroups (a concept related to N1,2-spaces) in the setting of metric measure spaces whose measure is doubling and supports a 1-Poincaré inequality. We prove a characterization of sets of finite perimeter in terms of a short time behavior of the heat semigroup in such metric spaces. We also give a new characterization of BV functions in terms of a near-diagonal energy in this general setting.
2016
Marola, Niko; Miranda, Michele; Shanmugalingam, Nageswari
File in questo prodotto:
File Dimensione Formato  
Marola2016_Article_CharacterizationsOfSetsOfFinit.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 415.32 kB
Formato Adobe PDF
415.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
MMSMarch2016PArevision_2_.pdf

accesso aperto

Descrizione: Post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 390.85 kB
Formato Adobe PDF
390.85 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2383343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact