We present the results of our final analysis of the full data set of g1p(Q2), the spin structure function of the proton, collected using CLAS at Jefferson Laboratory in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.7 GeV were scattered from proton targets (NH315 dynamically polarized along the beam direction) and detected with CLAS. From the measured double spin asymmetries, we extracted virtual photon asymmetries A1p and A2p and spin structure functions g1p and g2p over a wide kinematic range (0.05 GeV2<Q2< 5 GeV2 and 1.08 GeV <W< 3 GeV) and calculated moments of g1p. We compare our final results with various theoretical models and expectations, as well as with parametrizations of the world data. Our data, with their precision and dense kinematic coverage, are able to constrain fits of polarized parton distributions, test pQCD predictions for quark polarizations at large x, offer a better understanding of quark-hadron duality, and provide more precise values of higher twist matrix elements in the framework of the operator product expansion.
Determination of the proton spin structure functions for 0.05 < Q^(2) < 5 GeV^(2) using CLAS
Balossino, I.;Ciullo, G.;Contalbrigo, M.;Lenisa, P.;Movsisyan, A.;
2017
Abstract
We present the results of our final analysis of the full data set of g1p(Q2), the spin structure function of the proton, collected using CLAS at Jefferson Laboratory in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.7 GeV were scattered from proton targets (NH315 dynamically polarized along the beam direction) and detected with CLAS. From the measured double spin asymmetries, we extracted virtual photon asymmetries A1p and A2p and spin structure functions g1p and g2p over a wide kinematic range (0.05 GeV2I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.