A homogeneous polynomial of degree d in n C 1 variables is identifiable if it admits a unique additive decomposition in powers of linear forms. Identifiability is expected to be very rare. In this paper we conclude a work started more than a century ago and we describe all values of d and n for which a general polynomial of degree d in n C 1 variables is identifiable. This is done by classifying a special class of Cremona transformations of projective spaces.

Identifiability of homogeneous polynomials and Cremona transformations

Galuppi, Francesco
Primo
;
Mella, Massimiliano
Ultimo
2019

Abstract

A homogeneous polynomial of degree d in n C 1 variables is identifiable if it admits a unique additive decomposition in powers of linear forms. Identifiability is expected to be very rare. In this paper we conclude a work started more than a century ago and we describe all values of d and n for which a general polynomial of degree d in n C 1 variables is identifiable. This is done by classifying a special class of Cremona transformations of projective spaces.
2019
Galuppi, Francesco; Mella, Massimiliano
File in questo prodotto:
File Dimensione Formato  
dentifiability of homogeneous polynomials and Cremona transformations.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 525.07 kB
Formato Adobe PDF
525.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1606.06895.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 313.17 kB
Formato Adobe PDF
313.17 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2380927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 23
social impact