A homogeneous polynomial of degree d in n C 1 variables is identifiable if it admits a unique additive decomposition in powers of linear forms. Identifiability is expected to be very rare. In this paper we conclude a work started more than a century ago and we describe all values of d and n for which a general polynomial of degree d in n C 1 variables is identifiable. This is done by classifying a special class of Cremona transformations of projective spaces.
Identifiability of homogeneous polynomials and Cremona transformations
Galuppi, Francesco
Primo
;Mella, Massimiliano
Ultimo
2019
Abstract
A homogeneous polynomial of degree d in n C 1 variables is identifiable if it admits a unique additive decomposition in powers of linear forms. Identifiability is expected to be very rare. In this paper we conclude a work started more than a century ago and we describe all values of d and n for which a general polynomial of degree d in n C 1 variables is identifiable. This is done by classifying a special class of Cremona transformations of projective spaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
dentifiability of homogeneous polynomials and Cremona transformations.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
525.07 kB
Formato
Adobe PDF
|
525.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1606.06895.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
313.17 kB
Formato
Adobe PDF
|
313.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.