A tensor T, in a given tensor space, is said to be h-identifiable if it admits a unique decomposition as a sum of h rank one tensors. A criterion for h-identifiability is called effective if it is satisfied in a dense, open subset of the set of rank h tensors. In this paper we give effective h-identifiability criteria for a large class of tensors. We then improve these criteria for some symmetric tensors. For instance, this allows us to give a complete set of effective identifiability criteria for ternary quintic polynomials. Finally, we implement our identifiability algorithms in Macaulay2.

Effective identifiability criteria for tensors and polynomials

Massarenti, Alex
Primo
;
Mella, Massimiliano
Secondo
;
2018

Abstract

A tensor T, in a given tensor space, is said to be h-identifiable if it admits a unique decomposition as a sum of h rank one tensors. A criterion for h-identifiability is called effective if it is satisfied in a dense, open subset of the set of rank h tensors. In this paper we give effective h-identifiability criteria for a large class of tensors. We then improve these criteria for some symmetric tensors. For instance, this allows us to give a complete set of effective identifiability criteria for ternary quintic polynomials. Finally, we implement our identifiability algorithms in Macaulay2.
2018
Massarenti, Alex; Mella, Massimiliano; Staglianã², Giovanni
File in questo prodotto:
File Dimensione Formato  
Identifiability_MMS_R2.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 160.84 kB
Formato Adobe PDF
160.84 kB Adobe PDF Visualizza/Apri
1-s2.0-S074771711730113X-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 328.55 kB
Formato Adobe PDF
328.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2380251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact