A tensor T, in a given tensor space, is said to be h-identifiable if it admits a unique decomposition as a sum of h rank one tensors. A criterion for h-identifiability is called effective if it is satisfied in a dense, open subset of the set of rank h tensors. In this paper we give effective h-identifiability criteria for a large class of tensors. We then improve these criteria for some symmetric tensors. For instance, this allows us to give a complete set of effective identifiability criteria for ternary quintic polynomials. Finally, we implement our identifiability algorithms in Macaulay2.
Effective identifiability criteria for tensors and polynomials
Massarenti, Alex
Primo
;Mella, Massimiliano
Secondo
;
2018
Abstract
A tensor T, in a given tensor space, is said to be h-identifiable if it admits a unique decomposition as a sum of h rank one tensors. A criterion for h-identifiability is called effective if it is satisfied in a dense, open subset of the set of rank h tensors. In this paper we give effective h-identifiability criteria for a large class of tensors. We then improve these criteria for some symmetric tensors. For instance, this allows us to give a complete set of effective identifiability criteria for ternary quintic polynomials. Finally, we implement our identifiability algorithms in Macaulay2.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Identifiability_MMS_R2.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
160.84 kB
Formato
Adobe PDF
|
160.84 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S074771711730113X-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
328.55 kB
Formato
Adobe PDF
|
328.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.