BACKGROUND & AIMS: The mechanisms underlying neurologic impairment in celiac disease remain unknown. We tested whether antineuronal antibody-positive sera of patients with celiac disease evoke neurodegeneration via apoptosis in vitro. METHODS: SH-Sy5Y cells were exposed to crude sera, isolated immunoglobulin (Ig) G and IgG-depleted sera of patients with and without celiac disease with and without neurologic disorders, and antineuronal antibodies. Adsorption studies with gliadin and tissue transglutaminase (tTG) were performed in celiac disease sera. Apoptosis activated caspase-3, apaf-1, Bax, cytochrome c, cleaved caspase-8 and caspase-9 and mitochondrial respiratory chain complexes were evaluated with different methods. RESULTS: SH-Sy5Y cells exposed to antineuronal antibody-positive sera and isolated IgG from the same sera exhibited a greater percentage of TUNEL-positive nuclei than that of antineuronal antibody-negative sera. Neuroblasts exposed to antineuronal antibody-negative celiac disease sera also showed greater TUNEL positivity and apaf-1 immunolabeled cells than controls. Antigliadin- and anti-tTG-depleted celiac disease sera had an apoptotic effect similar to controls. Anti-caspase-3 immunostained cells were greater than controls when exposed to positive sera. The mitochondrial respiratory chain complex was reduced by positive sera. Western blot demonstrated only caspase-9 cleavage in positive sera. Cytochrome c and Bax showed reciprocal translocation (from mitochondria to cytoplasm and vice versa) after treatment with positive sera. CONCLUSIONS: Antineuronal antibodies and, to a lower extent, combined antigliadin and anti-tTG antibodies in celiac disease sera contribute to neurologic impairment via apoptosis. Apaf-1 activation with Bax and cytochrome c translocation suggest a mitochondrial-dependent apoptosis.

Background & Aims: The mechanisms underlying neurologic impairment in celiac disease remain unknown. We tested whether antineuronal antibody-positive sera of patients with celiac disease evoke neurodegeneration via apoptosis in vitro. Methods: SH-Sy5Y cells were exposed to crude sera, isolated immunoglobulin (Ig) G and IgG-depleted sera of patients with and without celiac disease with and without neurologic disorders, and antineuronal antibodies. Adsorption studies with gliadin and tissue transglutaminase (tTG) were performed in celiac disease sera. Apoptosis activated caspase-3, apaf-1, Bax, cytochrome c, cleaved caspase-8 and caspase-9 and mitochondrial. respiratory chain complexes were evaluated with different methods. Results: SH-Sy5Y cells exposed to antineuronal antibody-positive sera and isolated IgG from the same sera exhibited a greater percentage of TUNEL-positive nuclei than that of antineuronal and body-negative sera. Neuroblasts exposed to antineuronal antibody-negative celiac disease sera also showed greater TUNEL positivity and apaf-1 immunolabeled cells than controls. Antigliadin- and anti-tTG-depleted celiac disease sera had an apoptotic effect similar to controls. Anti-caspase-3 immunostained cells were greater than controls when exposed to positive sera. The mitochondrial respiratory chain complex was reduced by positive sera. Western blot demonstrated only caspase-9 cleavage in positive sera. Cytochrome c and Bax showed reciprocal translocation (from mitochondria to cytoplasm and vice versa) after treatment with positive sera. Conclusions: Antineuronal antibodies and, to a lower extent, combined antigliadin and anti-tTG antibodies in celiac disease sera contribute to neurologic impairment via apoptosis. Apaf-1 activation with Bax and cytochrome c translocation suggest a mitochondrial-dependent apoptosis.

Sera of Patients With Celiac Disease and Neurologic Disorders Evoke a Mitochondrial-Dependent Apoptosis In Vitro

DE GIORGIO, Roberto
2007

Abstract

Background & Aims: The mechanisms underlying neurologic impairment in celiac disease remain unknown. We tested whether antineuronal antibody-positive sera of patients with celiac disease evoke neurodegeneration via apoptosis in vitro. Methods: SH-Sy5Y cells were exposed to crude sera, isolated immunoglobulin (Ig) G and IgG-depleted sera of patients with and without celiac disease with and without neurologic disorders, and antineuronal antibodies. Adsorption studies with gliadin and tissue transglutaminase (tTG) were performed in celiac disease sera. Apoptosis activated caspase-3, apaf-1, Bax, cytochrome c, cleaved caspase-8 and caspase-9 and mitochondrial. respiratory chain complexes were evaluated with different methods. Results: SH-Sy5Y cells exposed to antineuronal antibody-positive sera and isolated IgG from the same sera exhibited a greater percentage of TUNEL-positive nuclei than that of antineuronal and body-negative sera. Neuroblasts exposed to antineuronal antibody-negative celiac disease sera also showed greater TUNEL positivity and apaf-1 immunolabeled cells than controls. Antigliadin- and anti-tTG-depleted celiac disease sera had an apoptotic effect similar to controls. Anti-caspase-3 immunostained cells were greater than controls when exposed to positive sera. The mitochondrial respiratory chain complex was reduced by positive sera. Western blot demonstrated only caspase-9 cleavage in positive sera. Cytochrome c and Bax showed reciprocal translocation (from mitochondria to cytoplasm and vice versa) after treatment with positive sera. Conclusions: Antineuronal antibodies and, to a lower extent, combined antigliadin and anti-tTG antibodies in celiac disease sera contribute to neurologic impairment via apoptosis. Apaf-1 activation with Bax and cytochrome c translocation suggest a mitochondrial-dependent apoptosis.
2007
Cervio, E; Volta, U; Verri, M; Boschi, F; Pastoris, O; Granito, A; Barbara, G; Parisi, C; Felicani, C; Tonini, M; DE GIORGIO, Roberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2374919
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 37
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 56
social impact