In rough set theory (RST), and more generally in granular computing on information tables (GRC-IT), a central tool is the Pawlak's indiscernibility relation between objects of a universe set with respect to a fixed attribute subset. Let us observe that Pawlak's relation induces in a natural way an equivalence relation ≈ on the attribute power set that identifies two attribute subsets yielding the same indiscernibility partition. We call indistinguishability relation of a given information table I the equivalence relation ≈, that can be considered as a kind of global indiscernibility. In this paper we investigate the mathematical foundations of indistinguishability relation through the introduction of two new structures that are, respectively, a complete lattice and an abstract simplicial complex. We show that these structures can be studied at both a micro granular and a macro granular level and that are naturally related to the core and the reducts of I. We first discuss the role of these structures in GrC-IT by providing some interpretations, then we prove several mathematical results concerning the fundamental properties of such structures.

Micro and macro models of granular computing induced by the indiscernibility relation

BISI, Cinzia
Primo
;
2017

Abstract

In rough set theory (RST), and more generally in granular computing on information tables (GRC-IT), a central tool is the Pawlak's indiscernibility relation between objects of a universe set with respect to a fixed attribute subset. Let us observe that Pawlak's relation induces in a natural way an equivalence relation ≈ on the attribute power set that identifies two attribute subsets yielding the same indiscernibility partition. We call indistinguishability relation of a given information table I the equivalence relation ≈, that can be considered as a kind of global indiscernibility. In this paper we investigate the mathematical foundations of indistinguishability relation through the introduction of two new structures that are, respectively, a complete lattice and an abstract simplicial complex. We show that these structures can be studied at both a micro granular and a macro granular level and that are naturally related to the core and the reducts of I. We first discuss the role of these structures in GrC-IT by providing some interpretations, then we prove several mathematical results concerning the fundamental properties of such structures.
2017
Bisi, Cinzia; G., Chiaselotti; D., Ciucci; T., Gentile; F. G., Infusino
File in questo prodotto:
File Dimensione Formato  
MicroMacro.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Ind_INF_Final.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 401.14 kB
Formato Adobe PDF
401.14 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2365216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 23
social impact