We propose a dynamical model for (non-isothermal) phase transitions in liquid crystals. Macroscopic motions of the liquid crystal (LC) are neglected, while the coupling with the electromagnetic field is considered. The LC is described in terms of the classical order tensor Q, which is split as Q=sN, where N is a normalized tensor. Two independent evolution laws are given for s and N. The model includes an evolutive equation for the temperature field obtained from an appropriate form of the energy balance, in which the internal powers associated to the equations for s and N are accounted for. The thermodynamic restrictions in the constitutive relations which ensure the Clausius–Duhem inequality have been pointed out.

A thermodynamic approach to isotropic- nematic phase transitions in liquid crystals.

GRANDI, Diego
2012

Abstract

We propose a dynamical model for (non-isothermal) phase transitions in liquid crystals. Macroscopic motions of the liquid crystal (LC) are neglected, while the coupling with the electromagnetic field is considered. The LC is described in terms of the classical order tensor Q, which is split as Q=sN, where N is a normalized tensor. Two independent evolution laws are given for s and N. The model includes an evolutive equation for the temperature field obtained from an appropriate form of the energy balance, in which the internal powers associated to the equations for s and N are accounted for. The thermodynamic restrictions in the constitutive relations which ensure the Clausius–Duhem inequality have been pointed out.
2012
A., Berti; V., Berti; Grandi, Diego
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2362489
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact