Bioturbation studies have generally analyzed small and abundant organisms while the contribution to the benthic metabolism by rare, large macrofauna has received little attention. We hypothesize that large, sporadic bivalves may represent a hot spot for benthic processes due to a combination of direct and indirect effects as their metabolic and bioturbation activities. Intact riverine sediments with and without individuals of the bivalve Sinanodonta woodiana were collected in a reach with transparent water, where the occurrence of the mollusk was clearly visible. The bivalve metabolism and its effects on sedimentary fluxes of dissolved gas and nutrients were measured via laboratory incubations of intact cores under controlled conditions. S. woodiana contributed significantly to O2 and TCO2 benthic fluxes through its respiration and to (Formula presented.), SRP and SiO2 regeneration via its excretion. The bivalve significantly stimulated also microbial denitrification and determined a large efflux of CH4, likely due a combination of bioturbation and biodeposition activities or to anaerobic metabolism within the mollusk gut. This study demonstrates that a few, large individuals of this bivalve produce significant effects on aerobic and anaerobic benthic metabolism and nutrient mobilization. Random sediment sampling in turbid waters seldom catches these important effects due to low densities of large fauna.

Rare but large bivalves alter benthic respiration and nutrient recycling in riverine sediments

BENELLI, Sara
Primo
;
BARTOLI, Marco
Secondo
;
FANO, Elisa Anna
Ultimo
2017

Abstract

Bioturbation studies have generally analyzed small and abundant organisms while the contribution to the benthic metabolism by rare, large macrofauna has received little attention. We hypothesize that large, sporadic bivalves may represent a hot spot for benthic processes due to a combination of direct and indirect effects as their metabolic and bioturbation activities. Intact riverine sediments with and without individuals of the bivalve Sinanodonta woodiana were collected in a reach with transparent water, where the occurrence of the mollusk was clearly visible. The bivalve metabolism and its effects on sedimentary fluxes of dissolved gas and nutrients were measured via laboratory incubations of intact cores under controlled conditions. S. woodiana contributed significantly to O2 and TCO2 benthic fluxes through its respiration and to (Formula presented.), SRP and SiO2 regeneration via its excretion. The bivalve significantly stimulated also microbial denitrification and determined a large efflux of CH4, likely due a combination of bioturbation and biodeposition activities or to anaerobic metabolism within the mollusk gut. This study demonstrates that a few, large individuals of this bivalve produce significant effects on aerobic and anaerobic benthic metabolism and nutrient mobilization. Random sediment sampling in turbid waters seldom catches these important effects due to low densities of large fauna.
2017
Benelli, Sara; Bartoli, Marco; Racchetti, Erica; Moraes, Paula Carpintero; Zilius, Mindaugas; Lubiene, Irma; Fano, Elisa Anna
File in questo prodotto:
File Dimensione Formato  
Benelli2017_Article_RareButLargeBivalvesAlterBenth.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 968.16 kB
Formato Adobe PDF
968.16 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2360461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact