We consider the eigenvalue problem for the fractional p-Laplacian in an open bounded, possibly disconnected set ω ⊂ Rn, under homogeneous Dirichlet boundary conditions. After discussing some regularity issues for eigenfunctions, we show that the second eigenvalue λ2(ω) is well-defined, and we characterize it by means of several equivalent variational formulations. In particular, we extend the mountain pass characterization of Cuesta, De Figueiredo and Gossez to the nonlocal and nonlinear setting. Finally, we consider the minimization problem. Infλ(ω)=c We prove that, differently from the local case, an optimal shape does not exist, even among disconnected sets. A minimizing sequence is given by the union of two disjoint balls of volume c/2 whose mutual distance tends to infinity.
The second eigenvalue of the fractional p-Laplacian
BRASCO, Lorenzo;
2016
Abstract
We consider the eigenvalue problem for the fractional p-Laplacian in an open bounded, possibly disconnected set ω ⊂ Rn, under homogeneous Dirichlet boundary conditions. After discussing some regularity issues for eigenfunctions, we show that the second eigenvalue λ2(ω) is well-defined, and we characterize it by means of several equivalent variational formulations. In particular, we extend the mountain pass characterization of Cuesta, De Figueiredo and Gossez to the nonlocal and nonlinear setting. Finally, we consider the minimization problem. Infλ(ω)=c We prove that, differently from the local case, an optimal shape does not exist, even among disconnected sets. A minimizing sequence is given by the union of two disjoint balls of volume c/2 whose mutual distance tends to infinity.File | Dimensione | Formato | |
---|---|---|---|
brapar_ACV.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
735.16 kB
Formato
Adobe PDF
|
735.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.