The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-κB. It has been argued that one of the pathways leading to the activation of NF-κB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF-κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF-κB, and that this negative regulation of ROS is the means through which NF-κB counters programmed cells.

Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: The mutual crosstalk between ROS and NF-kB

NERI, Margherita
Secondo
;
2016

Abstract

The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-κB. It has been argued that one of the pathways leading to the activation of NF-κB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF-κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF-κB, and that this negative regulation of ROS is the means through which NF-κB counters programmed cells.
2016
Turillazzi, Emanuela; Neri, Margherita; Cerretani, Daniela; Cantatore, Santina; Frati, Paola; Moltoni, Laura; Busardò Francesco, Paolo; Pomara, Cristoforo; Riezzo, Irene; Fineschi, Vittorio
File in questo prodotto:
File Dimensione Formato  
JCMM-20-601.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2357094
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 70
social impact