We reported previously that a hemiasterlin derivative BF65 is a potent anticancer agent that can inhibit microtubule assembly. Here we show that a more potent stereospecific diastereomer (R)(S)(S)-BF65 can synergize with an allosteric Akt inhibitor MK-2206 to suppress the growth of SKOV3 ovarian cancer cells with constitutively active Akt. (R)(S)(S)-BF65 induced mitotic arrest and MK-2206 caused G0/G1 arrest, while the combination of both induced simultaneous G0/G1 and G2/M cell cycle arrest. (R)(S)(S)-BF65 induced phosphorylation and inactivation of Bcl-2, and downregulated Mcl-1, consequently may lead to apoptosis. (R)(S)(S)-BF65 inhibited mitogen-activated protein kinases (MAPKs), which may stimulate cell proliferation upon activation. (R)(S)(S)-BF65 also induced DNA damage after long-term treatment. MK-2206 is known to inhibit phosphorylation and activation of Akt and suppress cancer cell growth. The combination of (R)(S)(S)-BF65 and MK-2206 also inhibited the Akt pathway. Interestingly, MK-2206 upregulated Bcl-2 and induced activation of MAPKs in SKOV3 cells; however, when combined with (R)(S)(S)-BF65, these prosurvival effects were reversed. The combination also more significantly decreased Mcl-1 protein, increased PARP cleavage, and induced γ-H2AX, a DNA damage marker. Remarkably, MK-2206 enhanced the microtubule depolymerization effect of (R)(S)(S)-BF65. The combination of (R)(S)(S)-BF65 and MK-2206 also markedly inhibited cell migration. Thus, MK-2206 synergizes with (R)(S)(S)-BF65 to inhibit SKOV3 cell growth via downregulating the Akt signaling pathway, and enhancing the microtubule disruption effect of (R)(S)(S)-BF65. (R)(S)(S)-BF65 in turn suppresses Bcl-2 and MAPKs induced by MK-2206. (R)(S)(S)-BF65 and MK-2206 compensate each other leading to increased apoptosis and enhanced cytotoxicity, and may also suppress cancer cell invasion.
Hemiasterlin derivative (R)(S)(S)-BF65 and Akt inhibitor MK-2206 synergistically inhibit SKOV3 ovarian cancer cell growth
BARUCHELLO, Riccardo;RONDANIN, Riccardo;MARCHETTI, Paolo;SIMONI, Daniele;
2016
Abstract
We reported previously that a hemiasterlin derivative BF65 is a potent anticancer agent that can inhibit microtubule assembly. Here we show that a more potent stereospecific diastereomer (R)(S)(S)-BF65 can synergize with an allosteric Akt inhibitor MK-2206 to suppress the growth of SKOV3 ovarian cancer cells with constitutively active Akt. (R)(S)(S)-BF65 induced mitotic arrest and MK-2206 caused G0/G1 arrest, while the combination of both induced simultaneous G0/G1 and G2/M cell cycle arrest. (R)(S)(S)-BF65 induced phosphorylation and inactivation of Bcl-2, and downregulated Mcl-1, consequently may lead to apoptosis. (R)(S)(S)-BF65 inhibited mitogen-activated protein kinases (MAPKs), which may stimulate cell proliferation upon activation. (R)(S)(S)-BF65 also induced DNA damage after long-term treatment. MK-2206 is known to inhibit phosphorylation and activation of Akt and suppress cancer cell growth. The combination of (R)(S)(S)-BF65 and MK-2206 also inhibited the Akt pathway. Interestingly, MK-2206 upregulated Bcl-2 and induced activation of MAPKs in SKOV3 cells; however, when combined with (R)(S)(S)-BF65, these prosurvival effects were reversed. The combination also more significantly decreased Mcl-1 protein, increased PARP cleavage, and induced γ-H2AX, a DNA damage marker. Remarkably, MK-2206 enhanced the microtubule depolymerization effect of (R)(S)(S)-BF65. The combination of (R)(S)(S)-BF65 and MK-2206 also markedly inhibited cell migration. Thus, MK-2206 synergizes with (R)(S)(S)-BF65 to inhibit SKOV3 cell growth via downregulating the Akt signaling pathway, and enhancing the microtubule disruption effect of (R)(S)(S)-BF65. (R)(S)(S)-BF65 in turn suppresses Bcl-2 and MAPKs induced by MK-2206. (R)(S)(S)-BF65 and MK-2206 compensate each other leading to increased apoptosis and enhanced cytotoxicity, and may also suppress cancer cell invasion.File | Dimensione | Formato | |
---|---|---|---|
Biochem.Pharmacol.16.pdf
solo gestori archivio
Descrizione: Full text ed
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.02 MB
Formato
Adobe PDF
|
3.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
11392_2356752_postprint_Marchetti_Paolo.pdf
accesso aperto
Descrizione: Post print
Tipologia:
Post-print
Licenza:
Creative commons
Dimensione
902.86 kB
Formato
Adobe PDF
|
902.86 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.