In this paper we present a second-order model based on the Aw, Rascle, Zhang model (ARZ) for vehicular traffics subject to point constraints on the flow, its motivation being, for instance, the modeling of traffic lights along a road. We first introduce a definition of entropy solution by choosing a family of entropy pairs analogous to the Kruzhkov entropy pairs for scalar conservation laws; then we apply the wave-front tracking method to prove existence and a priori bounds for the entropy solutions of constrained Cauchy problem for ARZ with initial data of bounded variation and piecewise constant constraints. The case of solutions attaining values at the vacuum is considered. We construct an explicit example to describe some qualitative features of the solutions.

A second-order model for vehicular traffics with local point constraints on the flow

Donadello, Carlotta;ROSINI, Massimiliano Daniele
2016

Abstract

In this paper we present a second-order model based on the Aw, Rascle, Zhang model (ARZ) for vehicular traffics subject to point constraints on the flow, its motivation being, for instance, the modeling of traffic lights along a road. We first introduce a definition of entropy solution by choosing a family of entropy pairs analogous to the Kruzhkov entropy pairs for scalar conservation laws; then we apply the wave-front tracking method to prove existence and a priori bounds for the entropy solutions of constrained Cauchy problem for ARZ with initial data of bounded variation and piecewise constant constraints. The case of solutions attaining values at the vacuum is considered. We construct an explicit example to describe some qualitative features of the solutions.
2016
Andreianov, Boris; Donadello, Carlotta; Rosini, Massimiliano Daniele
File in questo prodotto:
File Dimensione Formato  
bc95402705f28ba7d7cc3049346e8f8b193a.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 937.86 kB
Formato Adobe PDF
937.86 kB Adobe PDF Visualizza/Apri
s0218202516500172.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 937.88 kB
Formato Adobe PDF
937.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2356663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact