Tubulin binding agents (TBAs) are drugs commonly used in cancer therapy as antimitotics. In the last years it has been described that TBAs, like combretastatin A-4 (CA-4), present also vascular disrupting activity and among its derivatives we identified three analogues endowed with potent microtubule depolymerizing activity, higher than that of the lead compound. In this paper we have investigated the anti-vascular activity of these derivatives. We tested the anti-angiogenic effects in human umbilical endothelial cells (HUVEC) and in vivo in chick chorioallantoic membrane assay (CAM), and in a syngeneic tumor mouse model. The three molecules, compound 1: 1-(3,4,5-trimethoxyphenyl)-5-(4-ethoxyphenyl)-1H-1,2,4-triazole; compound 2: (1-(3,4,5-trimethoxyphenyl)-5-(4-ethoxyphenyl)-1H-tetrazole, compound-3 (4-amino-2-p-tolylaminothiazol-5-yl)-(3,4,5-trimethoxyphenyl)-methanone) showed a moderate effect on the growth of HUVEC cells at concentrations below 200. nM. At lower concentrations (5-20. nM), in particular compound 2, they induced inhibition of capillary tube formation, inhibition of endothelial cell migration and affected endothelial cell morphology as demonstrated by the alteration of the microfilaments network. Moreover, they also increased permeability of HUVEC cells in a time dependent manner. In addition, compounds 1 and 3, as well as the reference compound CA-4, inhibited VEGF-induced phosphorylation of VE-cadherin and in addition compound 3 prevented the VEGF-induced phosphorylation of FAK. In CAM assay, both compounds 2 and 3 efficiently counteracted the strong angiogenic response induced by bFGF, even at the lowest concentration used (1. pmol/egg). Moreover in a syngenic mouse model, compounds 1-3 after a single i.p. injection (30. mg/kg), showed a stronger reduction of microvascular density.Altogether our results identified these derivatives as potential new vascular disrupting agents candidates.
Vascular disrupting activity of combretastatin analogues
ROMAGNOLI, Romeo;
2016
Abstract
Tubulin binding agents (TBAs) are drugs commonly used in cancer therapy as antimitotics. In the last years it has been described that TBAs, like combretastatin A-4 (CA-4), present also vascular disrupting activity and among its derivatives we identified three analogues endowed with potent microtubule depolymerizing activity, higher than that of the lead compound. In this paper we have investigated the anti-vascular activity of these derivatives. We tested the anti-angiogenic effects in human umbilical endothelial cells (HUVEC) and in vivo in chick chorioallantoic membrane assay (CAM), and in a syngeneic tumor mouse model. The three molecules, compound 1: 1-(3,4,5-trimethoxyphenyl)-5-(4-ethoxyphenyl)-1H-1,2,4-triazole; compound 2: (1-(3,4,5-trimethoxyphenyl)-5-(4-ethoxyphenyl)-1H-tetrazole, compound-3 (4-amino-2-p-tolylaminothiazol-5-yl)-(3,4,5-trimethoxyphenyl)-methanone) showed a moderate effect on the growth of HUVEC cells at concentrations below 200. nM. At lower concentrations (5-20. nM), in particular compound 2, they induced inhibition of capillary tube formation, inhibition of endothelial cell migration and affected endothelial cell morphology as demonstrated by the alteration of the microfilaments network. Moreover, they also increased permeability of HUVEC cells in a time dependent manner. In addition, compounds 1 and 3, as well as the reference compound CA-4, inhibited VEGF-induced phosphorylation of VE-cadherin and in addition compound 3 prevented the VEGF-induced phosphorylation of FAK. In CAM assay, both compounds 2 and 3 efficiently counteracted the strong angiogenic response induced by bFGF, even at the lowest concentration used (1. pmol/egg). Moreover in a syngenic mouse model, compounds 1-3 after a single i.p. injection (30. mg/kg), showed a stronger reduction of microvascular density.Altogether our results identified these derivatives as potential new vascular disrupting agents candidates.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.