An increasingly large number of HPC systems rely on heterogeneous architectures combining traditional multi-core CPUs with power efficient accelerators. Designing efficient applications for these systems have been troublesome in the past as accelerators could usually be programmed using specific programming languages threatening maintainability, portability, and correctness. Several new programming environments try to tackle this problem. Among them, OpenACC offers a high-level approach based on compiler directives to mark regions of existing C, C++, or Fortran codes to run on accelerators. This approach directly addresses code portability, leaving to compilers the support of each different accelerator, but one has to carefully assess the relative costs of portable approaches versus computing efficiency. In this paper, we address precisely this issue, using as a test-bench a massively parallel lattice Boltzmann algorithm. We first describe our multi-node implementation and optimization of the algorithm, using OpenACC and MPI. We then benchmark the code on a variety of processors, including traditional CPUs and GPUs, and make accurate performance comparisons with other GPU implementations of the same algorithm using CUDA and OpenCL. We also asses the performance impact associated with portable programming, and the actual portability and performance-portability of OpenACC-based applications across several state-of-the-art architectures.

Performance and portability of accelerated lattice Boltzmann applications with OpenACC

Calore, Enrico;GABBANA, Alessandro;SCHIFANO, Sebastiano Fabio;TRIPICCIONE, Raffaele
2016

Abstract

An increasingly large number of HPC systems rely on heterogeneous architectures combining traditional multi-core CPUs with power efficient accelerators. Designing efficient applications for these systems have been troublesome in the past as accelerators could usually be programmed using specific programming languages threatening maintainability, portability, and correctness. Several new programming environments try to tackle this problem. Among them, OpenACC offers a high-level approach based on compiler directives to mark regions of existing C, C++, or Fortran codes to run on accelerators. This approach directly addresses code portability, leaving to compilers the support of each different accelerator, but one has to carefully assess the relative costs of portable approaches versus computing efficiency. In this paper, we address precisely this issue, using as a test-bench a massively parallel lattice Boltzmann algorithm. We first describe our multi-node implementation and optimization of the algorithm, using OpenACC and MPI. We then benchmark the code on a variety of processors, including traditional CPUs and GPUs, and make accurate performance comparisons with other GPU implementations of the same algorithm using CUDA and OpenCL. We also asses the performance impact associated with portable programming, and the actual portability and performance-portability of OpenACC-based applications across several state-of-the-art architectures.
2016
Calore, Enrico; Gabbana, Alessandro; Kraus, Jiri; Schifano, Sebastiano Fabio; Tripiccione, Raffaele
File in questo prodotto:
File Dimensione Formato  
1703.00186.pdf

accesso aperto

Descrizione: arXive
Tipologia: Post-print
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2345064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 25
social impact