In this paper, we are interested in studying self-alignment mechanisms described as jump processes. In the dynamics proposed, active particles are moving at a constant speed and align with their neighbors at random times following a Poisson process. This dynamics can be viewed as an asynchronous version of the so-called Vicsek model. Starting from this particle dynamics, we introduce the related kinetic description and then derive a continuum hydrodynamic model. We then introduce different discretization strategies for the hierarchy of proposed models, we numerically study the convergence of the schemes and compare the behaviors of the different systems for several test cases.

Self-alignment driven by jump processes: Macroscopic limit and numerical investigation

DIMARCO, Giacomo;
2016

Abstract

In this paper, we are interested in studying self-alignment mechanisms described as jump processes. In the dynamics proposed, active particles are moving at a constant speed and align with their neighbors at random times following a Poisson process. This dynamics can be viewed as an asynchronous version of the so-called Vicsek model. Starting from this particle dynamics, we introduce the related kinetic description and then derive a continuum hydrodynamic model. We then introduce different discretization strategies for the hierarchy of proposed models, we numerically study the convergence of the schemes and compare the behaviors of the different systems for several test cases.
2016
Dimarco, Giacomo; Motsch, Sebastien
File in questo prodotto:
File Dimensione Formato  
Vicsek_BGK_m3as_160127.pdf

accesso aperto

Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri
s0218202516500330.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2344504
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact