High silica zeolite Y has been positively evaluated to clean-up water polluted with sulfonamides, an antibiotic family which is known to be involved in the antibiotic resistance evolution. To define possible strategies for the exhausted zeolite regeneration, the efficacy of some chemico-physical treatments on the zeolite loaded with four different sulfonamides was evaluated. The evolution of photolysis, Fenton-like reaction, thermal treatments, and solvent extractions and the occurrence in the zeolite pores of organic residues eventually entrapped was elucidated by a combined thermogravimetric (TGA–DTA), diffractometric (XRPD), and spectroscopic (FT-IR) approach. The chemical processes were not able to remove the organic guest from zeolite pores and a limited transformation on embedded molecules was observed. On the contrary, both thermal treatment and solvent extraction succeeded in the regeneration of the zeolite loaded from deionized and natural fresh water. The recyclability of regenerated zeolite was evaluated over several adsorption/regeneration cycles, due to the treatment efficacy and its stability as well as the ability to regain the structural features of the unloaded material.
Physicochemical regeneration of high silica zeolite Y used to clean-up water polluted with sulfonamide antibiotics
MARTUCCI, AnnalisaUltimo
2016
Abstract
High silica zeolite Y has been positively evaluated to clean-up water polluted with sulfonamides, an antibiotic family which is known to be involved in the antibiotic resistance evolution. To define possible strategies for the exhausted zeolite regeneration, the efficacy of some chemico-physical treatments on the zeolite loaded with four different sulfonamides was evaluated. The evolution of photolysis, Fenton-like reaction, thermal treatments, and solvent extractions and the occurrence in the zeolite pores of organic residues eventually entrapped was elucidated by a combined thermogravimetric (TGA–DTA), diffractometric (XRPD), and spectroscopic (FT-IR) approach. The chemical processes were not able to remove the organic guest from zeolite pores and a limited transformation on embedded molecules was observed. On the contrary, both thermal treatment and solvent extraction succeeded in the regeneration of the zeolite loaded from deionized and natural fresh water. The recyclability of regenerated zeolite was evaluated over several adsorption/regeneration cycles, due to the treatment efficacy and its stability as well as the ability to regain the structural features of the unloaded material.File | Dimensione | Formato | |
---|---|---|---|
Paper_Regeneration_08_01_2015_AM.docx
solo gestori archivio
Descrizione: Articolo principale
Tipologia:
Altro materiale allegato
Dimensione
504.72 kB
Formato
Microsoft Word XML
|
504.72 kB | Microsoft Word XML | Visualizza/Apri Richiedi una copia |
Revised Manuscript.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
379.32 kB
Formato
Adobe PDF
|
379.32 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S1001074215003964-main.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
627.37 kB
Formato
Adobe PDF
|
627.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.