This paper focuses on the development and experimental testing of a composite blade for an automotive axial fan. A novel concept of morphing blade is proposed with the aim of replacing the conventional actuator systems. The structure is made up of a polymeric matrix equipped with NiTi shape memory alloy strips as active elements. The morphing blade changes its shape as the phase transformations of the strips are thermally activated by air- flow. To study the morphing capability of the blade, together with the recovery behavior of the NiTi strips, four different polymeric compounds have been compared. Digital image analysis techniques have been performed to quantitatively analyze the blade deflections and to evaluate the most suitable polymeric matrix for the intended application. Finally, the blade shape modifications, which occur along the blade span during the activation cycles, have been reconstructed by three-dimensional non-contact surface detection. Results from the comparison between these two reverse engineering methods could provide a powerful support for the assessment of the aerodynamic performance of the morphing blade.
Morphing blades with embedded SMA strips: An experimental investigation
FORTINI, Annalisa
Primo
;SUMAN, Alessio;MERLIN, Mattia;GARAGNANI, Gian LucaUltimo
2015
Abstract
This paper focuses on the development and experimental testing of a composite blade for an automotive axial fan. A novel concept of morphing blade is proposed with the aim of replacing the conventional actuator systems. The structure is made up of a polymeric matrix equipped with NiTi shape memory alloy strips as active elements. The morphing blade changes its shape as the phase transformations of the strips are thermally activated by air- flow. To study the morphing capability of the blade, together with the recovery behavior of the NiTi strips, four different polymeric compounds have been compared. Digital image analysis techniques have been performed to quantitatively analyze the blade deflections and to evaluate the most suitable polymeric matrix for the intended application. Finally, the blade shape modifications, which occur along the blade span during the activation cycles, have been reconstructed by three-dimensional non-contact surface detection. Results from the comparison between these two reverse engineering methods could provide a powerful support for the assessment of the aerodynamic performance of the morphing blade.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S026412751530246X-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
11392_2338921_PRE_Fortini.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.